洛谷P6066 [USACO05JAN] Watchcow S

题目描述

Farmer John 有 N 个农场(2≤≤1042≤N≤104),这些农场由 M 条道路连接(1≤M≤5×104)。不保证没有重边。

Bassie 从 1 号农场开始巡逻,每条路必须从两个方向各走恰好一遍,最后回到 1号农场。

请输出一条满足上述要求的路径。

保证这样的路径存在。如果有多条路径,任意输出一条即可。

输入格式

第一行两个整数 N,M。

接下来 M 行,每行两个整数 u,v,描述一条 u 到 v 的道路。

输出格式

输出经过的农场,一行一个。

输入输出样例

输入 #1

4 5
1 2
1 4
2 3
2 4
3 4

输出 #1

1
2
3
4
2
1
4
3
2
4
1

** 本题用到的是欧拉回路
是DFS的一个应用场景。
欧拉路:从图中某个点出发,遍历整个图,图中每条边通过且只通过一次。欧拉回路是起点和终点相同的欧拉路。
欧拉路和欧拉回路的存在性判断
首先欧拉图应该是连通图。可用DFS或者并查集判断。
在无向图中如果度数是奇数,称为奇点,否则称为偶点。
(1)无向连通图的判断。如果图全是偶点,则存在欧拉回路。如果只有两个奇点,也存在,一个是起点一个是终点。不可能出现奇数个奇点的无向图。
(2)有向连通图的判断。一个有向图出现欧拉回路的条件是当且仅当该图所有点的度数为0.
输出一个欧拉回路
1、用DFS输出一个欧拉回路
用栈模拟递归输出欧拉回路:递归常见的问题是爆栈,如果数据很大就不能直接用递归,需要自己写栈模拟递归。

2、可以用队列存储欧拉路径

#include<bits/stdc++.h>
using namespace std;
/*
从 1 号农场开始巡逻,每条路必须从两个方向各走恰好一遍,
最后回到 1 号农场,从一个点出发,每条边都走一遍并回到起点,
这是一个经典的欧拉回路问题。
由于每条路必须从两个方向各走恰好一遍,所以需要双向建边
*/
/*
啥是欧拉回路
对于无向图,欧拉回路就是在图的所有结点的度都是偶数,
并且图是连通的情况下,从任意一个节点开始 dfs 都可以回到原点。

对于有向图,欧拉回路就是在图的所有结点的出度和入度都相同,
并且图是连通的情况下,从任意一个节点开始 dfs 都可以回到原点。

本题明确说明存在欧拉回路,所以不需要判断。
*/

int n,m,u,v;
vector<int> edge[10005];
queue<int>ans;

void dfs(int f)
{//深搜,用了欧拉回路的思路, 会回来,删边就行 
	int len=edge[f].size();//len存储f节点的后继结点个数 
	for(int i=0;i<len;i++)//遍历该节点的后继结点个数 
	{
		int xn=edge[f][i];
		if(xn)//后继节点存在 
		{
			edge[f][i]=0;//删除边,也就是f节点的后继结点不存在 
			dfs(xn);
		}
	}
	ans.push(f);//存的是最终顺序, 
}

int main()
{
	cin>>n>>m;
	for(int i=1;i<=m;i++)
	{
		cin>>u>>v;
		edge[u].push_back(v);//双向建边 
		edge[v].push_back(u);
	}
	dfs(1);//从1号点开始 
	while(!ans.empty())//队列不为空的时候 
	{
		cout<<ans.front()<<endl;
		ans.pop();
	}
	return 0;
}

题目描述 农夫约翰一直在观察他的奶牛们。他注意到,如果在牛群中有太多的牛靠得太近,就会导致不健康的行为和情感问题。 约翰想知道他的牛群是否存在这个问题。他定义这个问题为:在一个固定长度的段上,如果有两头高度大于等于 $y$ 的奶牛之间的距离小于 $x$,则牛群中就存在一个挤得太近的情况。 约翰有 $N$ 头牛 ($1 \leq N \leq 50,000$),每头牛的高度为 $h_i$ ($1 \leq h_i \leq 1,000,000$)。他想知道是否存在一对牛,使得它们之间的距离小于 $x$,且它们的高度都大于等于 $y$。 输入格式 第一行包含三个整数 $N, L, R$,分别表示牛的数量,段长度,和问题的最大高度。 接下来 $N$ 行,每行一个整数 $h_i$,表示每头牛的高度。 输出格式 如果存在一对牛,它们之间的距离小于 $x$,且它们的高度都大于等于 $y$,则输出 $1$,否则输出 $0$。 输入样例1 4 6 4 4 4 5 7 输出样例1 1 输入样例2 5 3 3 1 5 5 5 5 输出样例2 0 提示 对于 $30\%$ 的数据,$N \leq 500$。 对于 $100\%$ 的数据,$1 \leq N \leq 50,000$,$1 \leq L \leq 1,000,000$,且 $L \leq R$。 数据范围 时间限制:1.0s,空间限制:256MB 算法1 (暴力枚举) $O(n^2)$ 首先对输入的牛的高度进行排序,之后枚举每头牛,再枚举它后面的每头牛,如果两头牛的高度均大于等于 $y$,且它们之间的距离小于 $x$,则输出 $1$。如果最后仍然没有满足条件的牛,则输出 $0$。 时间复杂度 暴力枚举,时间复杂度为 $O(n^2)$,无法通过此题。 算法2 (滑动窗口) $O(n \log n)$ 为了方便后续操作,我们将所有的牛按照它们的高度从小到大排序。之后,我们维护一个长度为 $L$ 的滑动窗口,它的右端点与左端点之间的距离小于 $x$。我们从左到右扫描每头牛,将它加入滑动窗口的左端点,同时将滑动窗口右移,直到滑动窗口的右端点与左端点之间的距离小于 $x$。 在处理完一头牛之后,我们需要判断滑动窗口中是否存在一对牛,它们的高度均大于等于 $y$,且它们之间的距离小于 $x$。我们可以用双指针来实现这个操作。我们从滑动窗口的左端点开始,向右移动一个指针 $i$,同时向右移动一个指针 $j$,直到 $h_j - h_i \leq x$。在这个过程中,我们需要判断 $h_i$ 和 $h_j$ 是否均大于等于 $y$。如果存在一对牛满足条件,则输出 $1$。如果最后仍然没有满足条件的牛,则输出 $0$。 时间复杂度 因为需要对所有的牛进行排序,所以时间复杂度为 $O(n \log n)$。 C++ 代码 算法3 (暴力优化) $O(n \log n)$ 首先对输入的牛的高度进行排序,之后枚举每头牛。如果当前牛的高度小于 $y$,则跳过这头牛。否则,我们从它的左边和右边各扩展出一个长度为 $x$ 的区间。如果这两个区间内的牛的数量均大于等于 $2$,且这两个区间中任意两头牛的高度均大于等于 $y$,则输出 $1$。 时间复杂度 因为需要对所有的牛进行排序,所以时间复杂度为 $O(n \log n)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值