题目描述
Farmer John 有 N 个农场(2≤≤1042≤N≤104),这些农场由 M 条道路连接(1≤M≤5×104)。不保证没有重边。
Bassie 从 1 号农场开始巡逻,每条路必须从两个方向各走恰好一遍,最后回到 1号农场。
请输出一条满足上述要求的路径。
保证这样的路径存在。如果有多条路径,任意输出一条即可。
输入格式
第一行两个整数 N,M。
接下来 M 行,每行两个整数 u,v,描述一条 u 到 v 的道路。
输出格式
输出经过的农场,一行一个。
输入输出样例
输入 #1
4 5 1 2 1 4 2 3 2 4 3 4
输出 #1
1 2 3 4 2 1 4 3 2 4 1
** 本题用到的是欧拉回路
是DFS的一个应用场景。
欧拉路:从图中某个点出发,遍历整个图,图中每条边通过且只通过一次。欧拉回路是起点和终点相同的欧拉路。
欧拉路和欧拉回路的存在性判断
首先欧拉图应该是连通图。可用DFS或者并查集判断。
在无向图中如果度数是奇数,称为奇点,否则称为偶点。
(1)无向连通图的判断。如果图全是偶点,则存在欧拉回路。如果只有两个奇点,也存在,一个是起点一个是终点。不可能出现奇数个奇点的无向图。
(2)有向连通图的判断。一个有向图出现欧拉回路的条件是当且仅当该图所有点的度数为0.
输出一个欧拉回路
1、用DFS输出一个欧拉回路
用栈模拟递归输出欧拉回路:递归常见的问题是爆栈,如果数据很大就不能直接用递归,需要自己写栈模拟递归。
2、可以用队列存储欧拉路径
#include<bits/stdc++.h>
using namespace std;
/*
从 1 号农场开始巡逻,每条路必须从两个方向各走恰好一遍,
最后回到 1 号农场,从一个点出发,每条边都走一遍并回到起点,
这是一个经典的欧拉回路问题。
由于每条路必须从两个方向各走恰好一遍,所以需要双向建边
*/
/*
啥是欧拉回路
对于无向图,欧拉回路就是在图的所有结点的度都是偶数,
并且图是连通的情况下,从任意一个节点开始 dfs 都可以回到原点。
对于有向图,欧拉回路就是在图的所有结点的出度和入度都相同,
并且图是连通的情况下,从任意一个节点开始 dfs 都可以回到原点。
本题明确说明存在欧拉回路,所以不需要判断。
*/
int n,m,u,v;
vector<int> edge[10005];
queue<int>ans;
void dfs(int f)
{//深搜,用了欧拉回路的思路, 会回来,删边就行
int len=edge[f].size();//len存储f节点的后继结点个数
for(int i=0;i<len;i++)//遍历该节点的后继结点个数
{
int xn=edge[f][i];
if(xn)//后继节点存在
{
edge[f][i]=0;//删除边,也就是f节点的后继结点不存在
dfs(xn);
}
}
ans.push(f);//存的是最终顺序,
}
int main()
{
cin>>n>>m;
for(int i=1;i<=m;i++)
{
cin>>u>>v;
edge[u].push_back(v);//双向建边
edge[v].push_back(u);
}
dfs(1);//从1号点开始
while(!ans.empty())//队列不为空的时候
{
cout<<ans.front()<<endl;
ans.pop();
}
return 0;
}