资源限制
内存限制:256.0MB C/C++时间限制:1.0s Java时间限制:3.0s Python时间限制:5.0s
问题描述
青蛙X正准备跳过一座桥,这座桥被划分为N段,记青蛙所在的起始点为0,桥的末端为N。桥上的一些点有一些石子,这些点是无法跳上去的。青蛙每次跳跃能向前跳跃+1,+2,+3段,现在请你算出跳到末端的总方法数。如果无法到达,请输出”No Way!"
输入格式
输入数据共N行。
第一行一个数字N,代表桥的长度。
接下来N行,表示从点1~N的道路情况,每行一个数字0或1,1表示有石子。
输出格式
输出一行,为一个整数,代表方法数,无法到达为“No Way!"
由于数据过大,我们只需要求出 对 1000000007 的余数即可
样例输入
5
1
0
0
1
0
样例输出
3
数据规模和约定
N <= 10^6
#include<iostream>
using namespace std;
const int N=1e6+5;
int n;
int mp[N];
int dp[N];//dp[i]:表示从0到i一共有dp[i]种走法
int main(){
cin>>n;
for(int i=1;i<=n;i++){
cin>>mp[i];
}
dp[1]=1,dp[2]=1,dp[3]=1;
for(int i=1;i<=n;i++){
if(mp[i]!=1){
if(i-1>=0&&i-1<=n&&mp[i-1]!=1){
dp[i]=dp[i]+dp[i-1];
dp[i]%=1000000007;
}
if(i-2>=0&&i-2<=n&&mp[i-2]!=1){
dp[i]=dp[i]+dp[i-2];
dp[i]%=1000000007;
}
if(i-3>=0&&i-3<=n&&mp[i-3]!=1){
dp[i]=dp[i]+dp[i-3];
dp[i]%=1000000007;
}
}
}
if(dp[n]==0){
cout<<"No Way!"<<endl;
}else{
cout<<dp[n]%1000000007<<endl;
}
return 0;
}