蓝桥杯练习系统(算法训练)ALGO-965 进击的青蛙

资源限制

内存限制:256.0MB   C/C++时间限制:1.0s   Java时间限制:3.0s   Python时间限制:5.0s

问题描述

  青蛙X正准备跳过一座桥,这座桥被划分为N段,记青蛙所在的起始点为0,桥的末端为N。桥上的一些点有一些石子,这些点是无法跳上去的。青蛙每次跳跃能向前跳跃+1,+2,+3段,现在请你算出跳到末端的总方法数。如果无法到达,请输出”No Way!"

输入格式

  输入数据共N行。

  第一行一个数字N,代表桥的长度。

  接下来N行,表示从点1~N的道路情况,每行一个数字0或1,1表示有石子。

输出格式

  输出一行,为一个整数,代表方法数,无法到达为“No Way!"
  由于数据过大,我们只需要求出 对 1000000007 的余数即可

样例输入

5

1

0

0

1

0

样例输出

3

数据规模和约定

  N <= 10^6

#include<iostream>
using namespace std;
const int N=1e6+5; 
int n;
int mp[N];
int dp[N];//dp[i]:表示从0到i一共有dp[i]种走法 

int main(){
	cin>>n;
	for(int i=1;i<=n;i++){
		cin>>mp[i];
	}
	dp[1]=1,dp[2]=1,dp[3]=1;
	for(int i=1;i<=n;i++){
		if(mp[i]!=1){
			if(i-1>=0&&i-1<=n&&mp[i-1]!=1){
				dp[i]=dp[i]+dp[i-1];
				dp[i]%=1000000007;
			}
			if(i-2>=0&&i-2<=n&&mp[i-2]!=1){
				dp[i]=dp[i]+dp[i-2];
				dp[i]%=1000000007;
			}
			if(i-3>=0&&i-3<=n&&mp[i-3]!=1){
				dp[i]=dp[i]+dp[i-3];
				dp[i]%=1000000007;
			}	
		}			
	} 
	if(dp[n]==0){
		cout<<"No Way!"<<endl; 
	}else{
		cout<<dp[n]%1000000007<<endl;
	}
	return 0;
} 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值