山东大学机器学习实验 lab9 决策树

山东大学机器学习实验lab9 决策树

修改:

  • 2024 5.17 建议去github上,这上边的那个文件读取当时我直接按txt读了,不规范。很多后来改的东西也只在github上更新了
  • 2024 5.17 这里我没有预剪枝和后剪枝,所以冗余节点很多,但是过拟合问题因为没有参照所以感觉也没有啥
  • 2024 5.15 添加了一些Node属性,用于标记每个Node使用的划分feature的名称,修改后的版本见 github
Node
  • 构造函数 初始化决策树的节点,包含节点ID、特征数据、特征ID、划分阈值、标签、父节点ID、子节点列表以及节点所属的类别
  • set_sons 设置节点的子节点列表
  • judge_stop 判断是否停止继续生成节点条件包括
    • 所有样本属于同一类别
    • 所有样本在所有属性上取值相同
    • 节点对应的样本集合为空
DecisionTree
  • 构造函数 初始化决策树,包括根节点列表、节点ID计数器
  • ent 计算信息熵,衡量数据集纯度
  • gain_single_feature 对于连续属性,寻找最佳划分点以最大化信息增益
  • gain_rate 计算所有特征的信息增益率,选择信息增益率最高的特征作为分裂依据
  • generate_node 递归生成子节点,根据特征的最佳分裂点划分数据集,直到满足停止条件
  • train 从根节点开始构建决策树
  • predict 给定数据,根据决策树进行分类预测
Data
  • 构造函数 加载数据集,初始化特征和标签
  • get_k_exmaine 实现K折交叉验证的数据切分,返回K个特征和标签组

整体流程

  1. 数据预处理:使用Data类读取数据文件,进行K折交叉验证的数据切分
  2. 模型训练与评估:对每一份测试数据,结合其余K-1份数据进行训练,使用DecisionTree类构建决策树模型,然后对测试集进行预测,计算正确率
  3. 结果展示:收集每一次交叉验证的正确率,最后计算并输出平均正确率

代码执行流程

  • 首先,Data类加载数据并进行K折交叉验证数据分割
  • 接着,对于每个验证折,训练数据被合并以训练决策树模型,然后在对应的测试数据上进行预测
  • 对每个测试样本,通过遍历决策树找到其所属类别,并与实际标签对比,累计正确预测的数量
  • 计算并打印每次验证的正确率,最后计算并输出所有折的平均正确率,以此评估模型的泛化能力

代码以及运行结果展示

import numpy as np 
import matplotlib.pyplot as plt 
import math 
class Node():
    def __init__(self,id_,features_,feature_id_,divide_,labels_,father_,sons_=[]):
        self.divide=divide_
        self.feature_id=feature_id_
        self.id=id_
        self.feature=features_
        self.labels=labels_ 
        self.father=father_ 
        self.sons=sons_
        self.clas='None'
    def set_sons(self,sons_):
        self.sons=sons_ 
    def judge_stop(self):
        labels=np.unique(self.labels)
        #如果节点样本属于同一类别
        if(labels.shape[0]==1):
            self.clas=labels[0]
            return True
        features=np.unique(self.feature)
        #如果所有样本在所有属性上取值相同
        if(features.shape[0]==1):
            unique_values, counts = np.unique(labels, return_counts=True)
            self.clas = unique_values[counts.argmax()]
            return True 
        #如果对应的样本集合为空
        if(self.feature.shape[0]==0 or self.feature.shape[1]==0):
            self.clas=1
            return True
        return False
class DecisionTree():
    def __init__(self):
        self.tree=[]
        self.id=0
        pass 
    #计算信息熵
    def ent(self,labels):
        labels_s=list(set([labels[i,0] for i in range(labels.shape[0])]))
        ans=0
        for label in labels_s:
            num=np.sum(labels==label)
            p=num/labels.shape[0]
            ans-=p*math.log(p,2)
        return ans 
    #计算一个标签对应的最佳分界(连续值)
    def gain_single_feature(self,feature,labels):
        origin_ent=self.ent(labels)
        divide_edge=[]
        feature=list(set(feature))
        feature=np.sort(feature)
        divide_edge=[(feature[i]+feature[i+1])/2.0 for i in range(feature.shape[0]-1)]
        best_ent=0
        best_divide=0
        l1=l2=np.array([[]])
        for condition in divide_edge:
            labels1=np.array([labels[i] for i in range(feature.shape[0]) if feature[i]<=condition])
            labels2=np.array([labels[i] for i in range(feature.shape[0]) if feature[i]>condition])
            ent1=self.ent(labels1)
            ent2=self.ent(labels2)
            ans=origin_ent-((labels1.shape[0]/labels.shape[0])*ent1+(labels2.shape[0]/labels.shape[0])*ent2)
            if(ans>=best_ent):
                best_divide=condition
                l1=labels1
                l2=labels2
                best_ent=ans 
        return best_divide,l1,l2,best_ent
    #计算信息增益
    def gain_rate(self,features,labels):
        origin_ent=self.ent(labels)
        gain_rate=0
        feature_id=-1
        divide=-1
        l=labels.shape[0]
        for id in range(features.shape[1]):
            divide1,labels1,labels2,th_gain=self.gain_single_feature(features[:,id],labels)
            l1=labels1.shape[0]
            l2=labels2.shape[0]
            iv=-1*((l1/l)*math.log(l1/l,2)+(l2/l)*math.log(l2/l,2))
            if iv!=0:
                rate=th_gain/iv
            else:
                rate=0
            if(rate>=gain_rate):
                gain_rate=rate
                divide=divide1
                feature_id=id
        return feature_id,divide
    def generate_node(self,node:Node):
        a=1
        features1_id=np.array([i for i in range(node.feature.shape[0]) if node.feature[i,node.feature_id]>=node.divide])
        features2_id=np.array([i for i in range(node.feature.shape[0]) if node.feature[i,node.feature_id]<node.divide])
        features1=node.feature[features1_id]
        features2=node.feature[features2_id]
        labels1=node.labels[features1_id]
        labels2=node.labels[features2_id]
        features1=np.delete(features1,node.feature_id,axis=1)
        features2=np.delete(features2,node.feature_id,axis=1)
        features_id1,divide1=self.gain_rate(features1,labels1)
        features_id2,divide2=self.gain_rate(features2,labels2)
        tmp=0
        if(features_id1!=-1):
            tmp+=1
            node1=Node(self.id+tmp,features1,features_id1,divide1,labels1,node.id,[])
            node1.father=node.id
            self.tree.append(node1)
            node.sons.append(self.id+tmp)
        if(features_id2!=-1):
            tmp+=1
            node2=Node(self.id+tmp,features2,features_id2,divide2,labels2,node.id,[])
            node2.father=node.id
            self.tree.append(node2)
            node.sons.append(self.id+tmp)
        self.id+=tmp
        if(tmp==0):
            unique_values, counts = np.unique(node.labels, return_counts=True)
            node.clas = 0 if counts[0]>counts[1] else 1
            return 
        for n in [self.tree[i] for i in node.sons]:
            if(n.judge_stop()):
                continue
            else:
                self.generate_node(n)
    def train(self,features,labels):
        feature_id,divide=self.gain_rate(features,labels)
        root=Node(0,features,feature_id,divide,labels,-1,[])
        self.tree.append(root)
        self.generate_node(root)
    def predict(self,features):
        re=[]
        for feature in features:
            node=self.tree[0]
            while(node.clas=='None'):
                th_feature=feature[node.feature_id]
                feature=np.delete(feature,node.feature_id,axis=0)
                th_divide=node.divide
                if(node.clas!='None'):
                    break 
                if(th_feature<th_divide):
                    node=self.tree[node.sons[len(node.sons)-1]]
                else:
                    node=self.tree[node.sons[0]]
            re.append(node.clas)
        return re 
class Data():
    def __init__(self):
        self.data=np.loadtxt('./data/ex6Data/ex6Data.txt',delimiter=',')
        self.data_num=self.data.shape[0]
        self.features=self.data[:,:-1]
        self.labels=self.data[:,-1:]
    def get_k_exmaine(self,k:int):
        num=int(self.data_num/k)
        data=self.data
        np.random.shuffle(self.data)
        features=data[:,:-1]
        labels=self.data[:,-1:]
        feature_groups=[features[i:i+num-1] for i in np.linspace(0,self.data_num,k+1,dtype=int)[:-1]]
        labels_groups=[labels[i:i+num-1] for i in np.linspace(0,self.data_num,k+1,dtype=int)[:-1]]
        return feature_groups,labels_groups
data=Data() 
feature_groups,label_groups=data.get_k_exmaine(10)
rate_set=[]
for ind in range(10):
    dt=DecisionTree()
    features_=[feature_groups[i] for i in range(10) if i!=ind]
    labels_=[label_groups[i] for i in range(10) if i!=ind]
    train_features=features_[0]
    train_labels=labels_[0]
    for feature,label in zip(features_[1:],labels_[1:]):
        train_features=np.vstack((train_features,feature))
        train_labels=np.vstack((train_labels,label))
    test_features=feature_groups[ind]
    test_labels=label_groups[ind]
    dt.train(train_features,train_labels)
    pred_re=dt.predict(test_features)
    right_num=0
    for i in range(len(pred_re)): 
        if pred_re[i]==test_labels[i][0]:
            right_num+=1
    right_rate=right_num/len(pred_re)
    print(str(ind+1)+'  correct_rate : '+str(right_rate))
    rate_set.append(right_rate)
print("average_rate : "+str(np.mean(np.array(rate_set))))
1  correct_rate : 0.7930327868852459
2  correct_rate : 0.8032786885245902
3  correct_rate : 0.8012295081967213
4  correct_rate : 0.7848360655737705
5  correct_rate : 0.7889344262295082
6  correct_rate : 0.7909836065573771
7  correct_rate : 0.7827868852459017
8  correct_rate : 0.7766393442622951
9  correct_rate : 0.8012295081967213
10  correct_rate : 0.7725409836065574
average_rate : 0.7895491803278689

最终得到的平均正确率为0.7895>0.78符合实验书要求

可视化

  • 需要将自定义的Node类转换为可识别的数据格式
from graphviz import Digraph

def show_tree(root_node, dot=None):
    if dot is None:
        dot = Digraph(comment='decision_tree')
    node_label = f"{root_node.id} [label=\"feature {root_node.feature_id}: {root_node.divide} | class: {root_node.clas}\"]"
    dot.node(str(root_node.id), node_label)
    if root_node.sons:
        for son_id in root_node.sons:
            dot.edge(str(root_node.id), str(son_id))
            visualize_tree(dt.tree[son_id], dot)
    return dot
root_node=dt.tree[0]
dot = show_tree(root_node)
dot.render('decision_tree', view=True,format='png')
from PIL import Image
Image.open('./decision_tree.png')
  • 这个决策树图有点过于大了,凑合看吧
    在这里插入图片描述
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值