用三个程序理解理解函数封装与递归思想(实验2)

1. 基础 :编写函数cal_factorial(n)计算阶乘(循环实现)。

def cal_factorial(n):
    """
    计算n的阶乘(循环实现)
    :param n: 非负整数
    :return: n的阶乘
    """
    if n < 0:
        return None
    result = 1
    for i in range(1, n+1):
        result *= i
    return result

# 测试
print(cal_factorial(5))  # 输出: 120
print(cal_factorial(0))  # 输出: 1

运行结果:

2. 进阶 :用递归实现斐波那契数列(考虑添加缓存优化)。

from functools import lru_cache

@lru_cache(maxsize=None)
def fibonacci(n):
    """
    递归实现斐波那契数列(带缓存优化)
    :param n: 非负整数
    :return: 第n个斐波那契数
    """
    if n < 0:
        return None
    if n <= 1:
        return n
    return fibonacci(n-1) + fibonacci(n-2)

# 测试
print(fibonacci(10))  # 输出: 55
print(fibonacci(20))  # 输出: 6765

运行结果:

3. 拓展 :科赫曲线正向、反向绘制,加入绘制速度、绘制颜色等额外功能

import turtle
import time


def koch_curve(t, length, depth, color='blue', speed=1):
    """
    绘制科赫曲线
    :param t: turtle对象
    :param length: 线段长度
    :param depth: 递归深度
    :param color: 绘制颜色
    :param speed: 绘制速度(1-10)
    """
    t.speed(speed)
    t.color(color)

    if depth == 0:
        t.forward(length)
    else:
        length /= 3.0
        koch_curve(t, length, depth - 1, color, speed)
        t.left(60)
        koch_curve(t, length, depth - 1, color, speed)
        t.right(120)
        koch_curve(t, length, depth - 1, color, speed)
        t.left(60)
        koch_curve(t, length, depth - 1, color, speed)


def draw_koch_snowflake():
    """绘制科赫雪花"""
    screen = turtle.Screen()
    screen.title("科赫雪花")

    t = turtle.Turtle()
    t.penup()
    t.goto(-150, 90)
    t.pendown()

    # 正向绘制
    start_time = time.time()
    for _ in range(3):
        koch_curve(t, 300, 3, 'blue', 5)
        t.right(120)
    end_time = time.time()
    print(f"正向绘制时间: {end_time - start_time:.2f}秒")

    # 反向绘制
    t.penup()
    t.goto(150, -90)
    t.pendown()
    t.setheading(180)  # 设置朝向为左

    start_time = time.time()
    for _ in range(3):
        koch_curve(t, 300, 3, 'red', 5)
        t.left(120)
    end_time = time.time()
    print(f"反向绘制时间: {end_time - start_time:.2f}秒")

    t.hideturtle()
    screen.mainloop()


# 运行绘制
draw_koch_snowflake()

运行结果:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值