自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(2)
  • 收藏
  • 关注

原创 大数据聚类分析中的K-means算法详解

算法概述:K-means 算法将数据集划分为 k 个簇,每个簇内数据对象的均值作为该簇的质心。与其他聚类算法的比较:K-means 算法与层次聚类算法、密度聚类算法等其他聚类算法相比,具有更强的可伸缩性和更高的运算效率。但是,对于形状复杂的簇、大小悬殊的簇或者数据集中的噪声点,K-means 算法可能不是最佳选择。K-means 算法是一种常见的聚类分析方法,它通过迭代寻找数据集中的 k 个簇,使得每个数据点到其所属的簇的质心(centroid)的平方距离之和最小。o 重新计算每个簇的质心;

2023-10-31 09:03:47 387 1

原创 【机器学习】Python数据处理

print (tuple[3:4]) # 输出从第二个元素开始到第三个元素。print(list[-2:5]) # 从倒数第二个到正数第五个元素。print(list[2:]) # 第三个元素开始的所有元素。print (tuple[0]) # 输出元组的第一个元素。a[2:5] = [] # 将第三到五个元素值设置为空值。#(3)对于列表类型,还有一种通过下标遍历的方式,如使用。print (tuple) # 输出完整元组。print(list[4]) # 第五个元素。

2023-09-18 22:32:58 141

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除