AI for Science(AI+化学)入门 #datewhale ai训练营

学习平台

第二届世界科学智能大赛 物质科学赛道:催化反应产率预测

http://competition.sais.com.cn/competitionDetail/532233/format

比赛内容是通过利用历史催化反应数据,并结合AI技术,可以预测新催化反应的产率,从而有效地帮助科研人员和产业界加快高活性反应条件的筛选速度,减少资源与人力的消耗,促进新物质的创造与合成。

赛题背景

比赛提供在药物合成中常见的多种催化反应实验数据,其中包括反应的底物、包括催化剂在内的反应添加剂、反应溶剂以及反应产物,期待选手通过分析反应数据,利用机器学习、深度学习算法或者大语言模型,建立产率预测模型,从而辅助未知新反应的反应条件筛选。

task1:构建一个能够准确预测碳氮成键反应产率的预测模型

一站式baseline

魔塔notebook,PAI-DSW是为算法开发者量身打造的云端深度学习开发环境,内置JupyterLab、WebIDE及Terminal,无需任何运维配置即可编写。

在cpu环境运行平台中,通过命令行完成数据文件使用

!pip install pandas
!pip install -U scikit-learn
!pip install rdkit

模型运行所需的环境依赖包括

  • Python3
  • pandas 强大的分析结构化数据的工具集;它的使用基础是Numpy(提供高性能的矩阵运算);用于数据挖掘和数据分析,同时也提供数据清洗功能。
  • scikit-learn 基于Numpy, Scipy和matplotlib,包含了大量的机器学习算法实现,包括分类、回归、聚类和降维等,还包含了诸多模型评估及选择的方法。
  • rdkit 常用的生物化学信息python工具包。它提供了大量对化学分子2D或3D的计算操作,可生成用于机器学习的分子描述符。

然后进行库的导入

# 首先,导入库
import pickle
import pandas as pd
from tqdm import tqdm
from sklearn.ensemble import RandomForestRegressor
from rdkit.Chem import rdMolDescriptors
from rdkit import RDLogger,Chem
import numpy as np
RDLogger.DisableLog('rdApp.*')

特征提取

这是机器学习模型运行最重要的步骤,机器学习作为较为简单的模型需要对输入数据进行处理。

官方发布数据的相关字段如下rxnid,Reactant1,Reactant2,Product,Additive,Solvent,Yield。其中:

  • rxnid 对数据的id标识,无实际意义
  • Reactant1 反应物1
  • Reactant2 反应物2
  • Product 产物
  • Additive 添加剂(包括催化剂catalyst等辅助反应物合成但是不对产物贡献原子的部分)
  • Solvent 溶剂
  • Yield 产率 其中Reactant1,Reactant2,Product,Additive,Solvent都是由SMILES表示。

生成分子指纹(Morgan Fingerprint)描述符,并将其转换为位向量(bit vector)形式。

def mfgen(mol,nBits=2048, radius=2):
    '''
    Parameters
    ----------
    mol : mol
        RDKit mol object.
    nBits : int
        Number of bits for the fingerprint.
    radius : int
        Radius of the Morgan fingerprint.
    Returns
    -------
    mf_desc_map : ndarray
        ndarray of molecular fingerprint descriptors.
    '''

    fp = rdMolDescriptors.GetMorganFingerprintAsBitVect(mol,radius=radius,nBits=nBits)
    return np.array(list(map(eval,list(fp.ToBitString()))))


def vec_cpd_lst(smi_lst):
    smi_set = list(set(smi_lst))
    smi_vec_map = {}
    for smi in tqdm(smi_set): # tqdm:
        mol = Chem.MolFromSmiles(smi)
        smi_vec_map[smi] = mfgen(mol)
    smi_vec_map[''] = np.zeros(2048)
    
    vec_lst = [smi_vec_map[smi] for smi in smi_lst]
    return np.array(vec_lst)

加载训练和测试数据。

dataset_dir = '../dataset'   #文件路径


train_df = pd.read_csv(f'{dataset_dir}/round1_train_data.csv')
test_df = pd.read_csv(f'{dataset_dir}/round1_test_data.csv')

print(f'Training set size: {len(train_df)}, test set size: {len(test_df)}')

提取化学反应物的SMILES字符串,转换为分子指纹,然后将这些指纹拼接为一个大的特征向量,用于机器学习模型的训练和测试。

# 数据读取
train_rct1_smi = train_df['Reactant1'].to_list()
train_rct2_smi = train_df['Reactant2'].to_list()
train_add_smi = train_df['Additive'].to_list()
train_sol_smi = train_df['Solvent'].to_list()

# 转化分子指纹
train_rct1_fp = vec_cpd_lst(train_rct1_smi)
train_rct2_fp = vec_cpd_lst(train_rct2_smi)
train_add_fp = vec_cpd_lst(train_add_smi)
train_sol_fp = vec_cpd_lst(train_sol_smi)
# 特征向量拼接
train_x = np.concatenate([train_rct1_fp,train_rct2_fp,train_add_fp,train_sol_fp],axis=1)
train_y = train_df['Yield'].to_numpy()

# 
test_rct1_smi = test_df['Reactant1'].to_list()
test_rct2_smi = test_df['Reactant2'].to_list()
test_add_smi = test_df['Additive'].to_list()
test_sol_smi = test_df['Solvent'].to_list()

test_rct1_fp = vec_cpd_lst(test_rct1_smi)
test_rct2_fp = vec_cpd_lst(test_rct2_smi)
test_add_fp = vec_cpd_lst(test_add_smi)
test_sol_fp = vec_cpd_lst(test_sol_smi)
test_x = np.concatenate([test_rct1_fp,test_rct2_fp,test_add_fp,test_sol_fp],axis=1)

随机森林建模

# Model fitting
model = RandomForestRegressor(n_estimators=15,max_depth=10,min_samples_split=2,min_samples_leaf=1,n_jobs=-1) 
model.fit(train_x,train_y) # 数据集训练模型
# 保存
with open('./random_forest_model.pkl', 'wb') as file:
    pickle.dump(model, file)
# 加载
with open('random_forest_model.pkl', 'rb') as file:
    loaded_model = pickle.load(file)
# 预测\推理
test_pred = loaded_model.predict(test_x)

参数解释:

  • n_estimators=10: 决策树的个数,越多越好;但是越多意味着计算开销越大;
  • max_depth: (default=None)设置树的最大深度,默认为None;
  • min_samples_split: 根据属性划分节点时,最少的样本数;
  • min_samples_leaf: 叶子节点最少的样本数;
  • n_jobs=1: 并行job个数,-1表示使用所有cpu进行并行计算。

最后生成要求的submit

ans_str_lst = ['rxnid,Yield']
for idx,y in enumerate(test_pred):
    ans_str_lst.append(f'test{idx+1},{y:.4f}')
with open('./submit.txt','w') as fw:
    fw.writelines('\n'.join(ans_str_lst))

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值