要找出满足 x1+x2+x3+x4=12x1+x2+x3+x4=12 的正整数解的数量,可以使用组合数学中的“隔板法”来解决。具体来说,我们可以将问题转化为一个组合问题,即在不允许负数的情况下,将 12 分成 4 个正整数的和。
代码:
#include <stdio.h>
// 递归函数计算符合条件的解的数量
void countSolutions(int sum, int num_vars, int min_val, int *count) {
if (num_vars == 1) {
// 如果只剩下一个变量,直接判断它是否大于等于 min_val
if (sum >= min_val) {
(*count)++;
}
return;
}
// 遍历所有可能的当前变量值
for (int i = min_val; i <= sum; i++) {
countSolutions(sum - i, num_vars - 1, min_val, count);
}
}
int main() {
int count = 0;
int total_sum = 12;
int num_vars = 4;
int min_val = 1; // 每个变量的最小值是 1
countSolutions(total_sum, num_vars, min_val, &count);
printf("满足x1 + x2 + x3 + x4 = %d 的正整数解的数量是: %d\n", total_sum, count);
return 0;
}
编译结果: