满足x1+x2+x3+x4=12的正整数解有多少组

要找出满足 x1+x2+x3+x4=12x1+x2+x3+x4=12 的正整数解的数量,可以使用组合数学中的“隔板法”来解决。具体来说,我们可以将问题转化为一个组合问题,即在不允许负数的情况下,将 12 分成 4 个正整数的和。

代码:

#include <stdio.h>

// 递归函数计算符合条件的解的数量
void countSolutions(int sum, int num_vars, int min_val, int *count) {
    if (num_vars == 1) {
        // 如果只剩下一个变量,直接判断它是否大于等于 min_val
        if (sum >= min_val) {
            (*count)++;
        }
        return;
    }
    
    // 遍历所有可能的当前变量值
    for (int i = min_val; i <= sum; i++) {
        countSolutions(sum - i, num_vars - 1, min_val, count);
    }
}

int main() {
    int count = 0;
    int total_sum = 12;
    int num_vars = 4;
    int min_val = 1; // 每个变量的最小值是 1
    
    countSolutions(total_sum, num_vars, min_val, &count);
    
    printf("满足x1 + x2 + x3 + x4 = %d 的正整数解的数量是: %d\n", total_sum, count);
    return 0;
}

编译结果:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值