头歌——人工智能(机器学习 --- 决策树1)

第1关:什么是决策树

决策树的相关概念:

决策树是一种可以用于分类与回归的机器学习算法,但主要用于分类。用于分类的决策树是一种描述对实例进行分类的树形结构。决策树由结点和边组成,其中结点分为内部结点和叶子结点,内部结点表示一个特征或者属性,叶子结点表示标签(脑回路图中黄色的是内部结点,蓝色的是叶子结点)。
在这里插入图片描述
在这里插入图片描述
决策树的一个非常大的优势就是模型的可理解性非常高,甚至可以用来挖掘数据中比较重要的信息。

那么如何构造出一棵好的决策树呢?其实构造决策树时会遵循一个指标,有的是按照信息增益来构建,如ID3算法;有的是信息增益率来构建,如C4.5算法;有的是按照基尼系数来构建的,如CART算法。但不管是使用哪种构建算法,决策树的构建过程通常都是一个递归选择最优特征,并根据特征对训练集进行分割,使得对各个子数据集有一个最好的分类的过程。

这一过程对应着对特征空间的划分,也对应着决策树的构建。一开始,构建决策树的根结点,将所有训练数据都放在根结点。选择一个最优特征,并按照这一特征将训练数据集分割成子集,使得各个子集有一个在当前条件下最好的分类。如果这些子集已经能够被基本正确分类,那么构建叶子结点,并将这些子集分到所对应的叶结点中去;如果还有子集不能被基本正确分类,那么就对这些子集选择新的最优特征,继续对其进行分割,并构建相应的结点。如此递归进行下去,直至所有训练数据子集被基本正确分类,或者没有合适的特征为止。最后每个子集都被分到叶子结点上,即都有了明确的类别。这就构建出了一棵决策树。

第2关:信息熵与信息增益

信息熵
信息是个很抽象的概念。人们常常说信息很多,或者信息较少,但却很难说清楚信息到底有多少。比如一本五十万字的中文书到底有多少信息量。

直到1948年,香农提出了“信息熵”的概念,才解决了对信息的量化度量问题。信息熵这个词是香农从热力学中借用过来的。热力学中的热熵是表示分子状态混乱程度的物理量。香农用信息熵的概念来描述信源的不确定度。信源的不确定性越大,信息熵也越大。
在这里插入图片描述
信息增益
现在已经知道了什么是熵,什么是条件熵。接下来就可以看看什么是信息增益了。所谓的信息增益就是表示我已知条件X后能得到信息Y的不确定性的减少程度。

就好比,我在玩读心术。你心里想一件东西,我来猜。我一开始什么都没问你,我要猜的话,肯定是瞎猜。这个时候我的熵就非常高。然后我接下来我会去试着问你是非题,当我问了是非题之后,我就能减小猜测你心中想到的东西的范围,这样其实就是减小了我的熵。那么我熵的减小程度就是我的信息增益。

所以信息增益如果套上机器学习的话就是,如果把特征A对训练集D的信息增益记为g(D, A)的话,那么g(D, A)的计算公式就是:
在这里插入图片描述

例题

为了更好的解释熵,条件熵,信息增益的计算过程,下面通过示例来描述。假设我现在有这一个数据集,第一列是编号,第二列是性别,第三列是活跃度,第四列是客户是否流失的标签(0表示未流失,1表示流失)。
在这里插入图片描述
假如要算性别和活跃度这两个特征的信息增益的话,首先要先算总的熵和条件熵。总的熵其实非常好算,就是把标签作为随机变量X。上表中标签只有两种(0和1)因此随机变量X的取值只有0或者1。所以要计算熵就需要先分别计算标签为0的概率和标签为1的概率。从表中能看出标签为0的数据有10条,所以标签为0的概率等于2/3。标签为1的概率为1/3。所以熵为:
在这里插入图片描述
在这里插入图片描述

性别的信息增益=总的熵-(8/15)性别为男的熵-(7/15)性别为女的熵=0.0064

活跃度的信息增益=总的熵-(6/15)*活跃度为高的熵-(5/15)活跃度为中的熵-(4/15)活跃度为低的熵=0.6776

那信息增益算出来之后有什么意义呢?回到读心术的问题,为了我能更加准确的猜出你心中所想,我肯定是问的问题越好就能猜得越准!换句话来说我肯定是要想出一个信息增益最大(减少不确定性程度最高)的问题来问你。其实ID3算法也是这么想的。ID3算法的思想是从训练集D中计算每个特征的信息增益,然后看哪个最大就选哪个作为当前结点。

代码

import numpy as np
def calcInfoGain(feature, label, index):
    '''
    计算信息增益
    :param feature:测试用例中字典里的feature,类型为ndarray
    :param label:测试用例中字典里的label,类型为ndarray
    :param index:测试用例中字典里的index,即feature部分特征列的索引。该索引指的是feature中第几个特征,如index:0表示使用第一个特征来计算信息增益。
    :return:信息增益,类型float
    '''
 
    #*********** Begin ***********#
    # 计算熵
    def calcInfoEntropy(feature, label):
        '''
        计算信息熵
        :param feature:数据集中的特征,类型为ndarray
        :param label:数据集中的标签,类型为ndarray
        :return:信息熵,类型float
        '''
 
        label_set = set(label)
        result = 0
        for l in label_set:
            count = 0
            for j in range(len(label)):
                if label[j] == l:
                    count += 1
            # 计算标签在数据集中出现的概率
            p = count / len(label)
            # 计算熵
            result -= p * np.log2(p)
        return result
 
    # 计算条件熵
    def calcHDA(feature, label, index, value):
        '''
        计算信息熵
        :param feature:数据集中的特征,类型为ndarray
        :param label:数据集中的标签,类型为ndarray
        :param index:需要使用的特征列索引,类型为int
        :param value:index所表示的特征列中需要考察的特征值,类型为int
        :return:信息熵,类型float
        '''
        count = 0
        # sub_feature和sub_label表示根据特征列和特征值分割出的子数据集中的特征和标签
        sub_feature = []
        sub_label = []
        for i in range(len(feature)):
        
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

kaixin_啊啊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值