代码随想录第25天 | 组合总和||| 、 电话号码的字母组合

本文讲述了在编程中如何使用回溯算法解决组合总和问题,通过改进遍历策略和加入剪枝操作优化算法效率,并以电话号码字母组合为例展示了如何嵌套循环实现递归。作者在1.5小时内学习并实践了这两种问题的解决方案。
摘要由CSDN通过智能技术生成

一、前言

参考文献:代码随想录

今天的还是回溯算法,主要用到了昨天的回溯组合方法和巧妙思路方法,让我们继续为算法打基础吧!

二、组合总和||| 

1、思路:

这一题和昨日的组合没啥太大区别只是遍历的范围变为了固定的1~9,所以只需要在for循环中做做手脚即可。

(1)首先还是确定返回值和参数,这里和昨天的一样,返回void,参数三个参数,组合大小,总和大小,以及开始位置

void backtracking(int k, int n, int Instart) 

(2)接着就是终止条件了,这个需要判断两个条件,以来确认是否符合要求

if (sum == n && path.size() == k) {
            result.push_back(path);
            return;
        }

长度和大小要符合要求。

(3)接着就是for循环和递归回溯了,最开始的版本是

        for (int i = Instart; i < 10; i++) {
            path.push_back(i);
            sum += i;
            backtracking(k ,n, i + 1);
            // 回溯,重新利用
            path.pop_back();
            sum -= i;
        

这里就没有涉及到剪枝的操作,而只是全部暴力递归了,然而我们发现sum>n时,就可以提前回溯了,因为后面的肯定不符合要求了。

 

        for (int i = Instart; i < 10 - (k - path.size()) + 1; i++) {
            path.push_back(i);
            sum += i;
            // 剪枝操作,只要sum大于n就可以直接剪掉了
            if (sum > n) {
                path.pop_back();
                sum -= i;
                return;
            }
            backtracking(k ,n, i + 1);
            // 回溯,重新利用
            path.pop_back();
            sum -= i;
        }

2、整体代码如下:

class Solution {
private:
    vector<int> path; // 存储单个组合
    vector<vector<int>> result; // 返回结果
    int sum; // 统计是否等于n
    void backtracking(int k, int n, int Instart) {
        if (sum == n && path.size() == k) {
            result.push_back(path);
            return;
        }
        for (int i = Instart; i < 10 - (k - path.size()) + 1; i++) {
            path.push_back(i);
            sum += i;
            // 剪枝操作,只要sum大于n就可以直接剪掉了
            if (sum > n) {
                path.pop_back();
                sum -= i;
                return;
            }
            backtracking(k ,n, i + 1);
            // 回溯,重新利用
            path.pop_back();
            sum -= i;
        }
    }
public:
    vector<vector<int>> combinationSum3(int k, int n) {
        backtracking(k, n, 1);
        return result;
    }
};

 三、电话号码的字母组合

1、思路:

这个题目,我根据我的印象做了,但是出不来,主要是对c++的STL不熟悉所以导致出不来结果,然后只能请问GPT教授了:

(1)首先这个题目也是利用回溯,即递归里面套循环,这里我们的返回值和参数如下:

void backtracking(string digits, int startI, int startJ, vector<string> s)

 其实这里面的startJ可以省略,因为他一直是从0开始的,从头开始遍历,找到组合项,digits就是需要按的按键,startI为按键的开始位置,s就是按键所对应的数字了

(2)终止条件,也很普遍,这里就不多说了

        if (path.size() == digits.size()) {
            result.push_back(path);
            return;
        }

(3)接着就是循环和递归了,这里面略微有些技巧,但是不多

for (int i = startI; i < digits.size(); i++) {
                // 判断这个按键包含数字的多少
                int digit = digits[i] - '2';
                for (int j = startJ; j < s[digit].size(); j++) {
                    path.push_back(s[digit][j]);
                    backtracking(digits, i + 1, 0, s);
                    path.pop_back();
                }
        }

 一共嵌套两层循环,第一层是按键的位置,第二层是按键包含的字母,就开始递归,回溯了。

2、整体代码如下:

class Solution {
private:
    string path;
    vector<string> result;
    
    void backtracking(string digits, int startI, int startJ, vector<string> s) {
        if (path.size() == digits.size()) {
            result.push_back(path);
            return;
        }
        for (int i = startI; i < digits.size(); i++) {
                int digit = digits[i] - '2';
                for (int j = startJ; j < s[digit].size(); j++) {
                    path.push_back(s[digit][j]);
                    backtracking(digits, i + 1, 0, s);
                    path.pop_back();
                }
        }
    }
public:
    vector<string> letterCombinations(string digits) {
        if (digits.size() == 0) {
            return result;
        }
        vector<string> s = {
            "abc",
            "def",
            "ghi",
            "jkl",
            "mno",
            "pqrs",
            "tuv",
            "wxyz"
        };
        backtracking(digits, 0, 0, s);
        return result;
    }
};

今日学习时间:1.5小时

leave message:

The boundless forest sheds its leaves shower by shower; the endless river rolls its waves hour after hour.

无边落木萧萧下,不尽长江滚滚来。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值