一、前言
参考文献:代码随想录
转眼见就已经一个月了,训练营已经过了一半了,今天地题目还是关于回溯算法,只是这是四道困难题目,然我们来好好研究一下吧!
二、重新安排行程
1、思路:
这个题目我看完第一眼,我没有任何的头绪。。
我只好看卡哥的题解,思路如下:
(1)返回值和参数为:
bool backtracking(vector<string> &result, int ticketNum)
这里为什么是返回bool类型?
因为需要判断有没有到叶子节点,到达叶子节点就可以直接返回了,因为航线只有一个;
参数result为返回值,他有两个作用1、用于存储航线;2、用于匹配map中下一个机场的名字,以及次数;
这里,我就要引出这个map数据结构了:
unordered_map<string, map<string, int>> targets;
这个map是可以做增删的,外层的map是无序的,里层的map是按照键的大小进行排序的,这个可以解决题目中的
这个要求,翻译过来就是<出发机场,<到达机场,机票次数>>
(2)终止条件:
if (result.size() == ticketNum + 1) {
return true;
}
这个原理比较好理解(ticketNum是航班次数),当我们画图发现,航班次数等于航线机场数量-1 ,这个模拟一下就会发现了,就不多了说。
里面的逻辑就是返回true,来告诉已经找到叶子节点了,可以返回true了。
(3)单层递归逻辑:
// 去找result里面最后到达的一个机场,然后找他的值,匹配下一个机场
for (pair<const string, int> &target : targets[result[result.size() - 1]]) {
if (target.second > 0) { // 机票够
result.push_back(target.first);
target.second--;
if (backtracking(result, ticketNum)) return true; // 找到叶子节点了就可以返回了
result.pop_back();
target.second++;
}
}
这个其实比较好理解,就是简单的从map数组里面取对应的到达机场,以及查看是否还有次数,就可以解决这个问题了。里面嵌套的就是添加、递归、回溯了。只有在到了叶子节点,才能去回溯,去树层的其他树枝。
2、整体代码如下:
class Solution {
private:
vector<string> result;
unordered_map<string, map<string, int>> targets;
// 返回bool值就是为了判断有没有到达叶子节点,到达了就可以直接返回了
bool backtracking(vector<string> &result, int ticketNum) {
if (result.size() == ticketNum + 1) {
return true;
}
// 去找result里面最后到达的一个机场,然后找他的值,匹配下一个机场
for (pair<const string, int> &target : targets[result[result.size() - 1]]) {
if (target.second > 0) { // 机票够
result.push_back(target.first);
target.second--;
if (backtracking(result, ticketNum)) return true; // 找到叶子节点了就可以返回了
result.pop_back();
target.second++;
}
}
return false;
}
public:
vector<string> findItinerary(vector<vector<string>>& tickets) {
// 初始化map and result
for (const vector<string> s : tickets) {
targets[s[0]][s[1]]++;
}
result.push_back("JFK");
backtracking(result, tickets.size());
return result;
}
};
二、N皇后
1、思路:
其实思路并并不难,要是能想到怎么去利用回溯来解决就是比较难的问题了。
2、整体代码:
class Solution {
private:
vector<vector<string>> result;
// 1、棋盘
// 2、大小
// 3、位于的行
void backtracking(vector<string> &chessboard, int n, int row) {
if (row == n) {
result.push_back(chessboard);
return;
}
for (int i = 0; i < n; i++) {
// 判断是否复合条件
if (isValue(chessboard, row, i, n)) {
// 添加皇后
chessboard[row][i] = 'Q';
// 递归
backtracking(chessboard, n, row + 1);
// 回溯
chessboard[row][i] = '.';
}
}
}
// row : 行
// col : 列
bool isValue(vector<string> &chessboard, int row, int col ,int n) {
// 竖直去重
for (int i = 0; i < row; i++) { //有一个细节剪枝操作,画图就能明白
// 1、row下方绝对没有Q
// 2、row同一层不会出现两个Q
if (chessboard[i][col] == 'Q') {
return false;
}
}
// 45°去重
for (int i = row - 1, j = col - 1; i >= 0 && j >= 0; j--, i--) {
if (chessboard[i][j] == 'Q') {
return false;
}
}
// 135°去重
for (int i = row - 1, j = col + 1; i >= 0 && j < n; j++, i--) {
if (chessboard[i][j] == 'Q') {
return false;
}
}
return true;
}
public:
vector<vector<string>> solveNQueens(int n) {
vector<string> chessboard(n, string(n, '.'));
backtracking(chessboard, n, 0);
return result;
}
};
三、解数独
1、思路:
已经不想写个题解了,先过一遍吧!
2、整体代码:
class Solution {
private:
bool backtracking(vector<vector<char>>& board) {
for (int i = 0; i < board.size(); i++) {
for (int j = 0; j < board[0].size(); j++) {
if (board[i][j] == '.') {
for (char k = '1'; k <= '9'; k++) {
if (isValue(i, j, k, board)) {
board[i][j] = 'k';
if (backtracking(board)) {
return true;
}
board[i][j] = '.';
}
}
return false;
}
}
}
return true;
}
bool isValue(int row, int col, char k, vector<vector<char>> board) {
// 检查行
for (int i = 0; i < board.size(); i++) {
if (board[i][col] == k && i != row) {
return false;
}
}
// 检查列
for (int j = 0; j < board.size(); j++) {
if (board[row][j] == k && j != col) {
return false;
}
}
// 判断9方格是否重复
int startRow = row / 3 * 3;
int startCol = col / 3 * 3;
for (int i = startRow; i < startRow + 3; i++) {
for (int j = startCol; j < startCol + 3; j++) {
if (board[i][j] == k) {
return false;
}
}
}
return true;
}
public:
void solveSudoku(vector<vector<char>>& board) {
backtracking(board);
}
};
学习时间:3小时;
leave message:
Death is not the opposite of life, but the part it.
死亡不是生命的对立面,而是它的一部分