代码随想录第43天 | 1049. 最后一块石头的重量 II 、 494. 目标和 、 474.一和零

本文介绍了动态规划在解决复杂背包问题(如最后一块石头的重量II)中的应用,包括确定dp数组、递推公式和遍历顺序。同时提及了01背包问题的解法,强调了倒序遍历避免重复的重要性。
摘要由CSDN通过智能技术生成

一、前言

参考文献:代码随想录

今天的主题还是关于动态规划的题目,难度又进一步了,思维方式也变得更加的灵活和抽象了;

二、最后一块石头的重量 II

1、思路:

这个题目的思路还是比较活跃,比拆分数字活的多,数学毕竟是通过实物抽象出来的;

首先要知道的思路是当两边的石头重量相等时,这样返回的结果就是0,所以要尽量把石头分为重量接近两堆,然后再进行碰撞,就能销毁的更多;

这就和昨天的题目如出一辙了;

(1)确定dp数组(初始化):

        vector<int> dp(15001, 0);

因为这里的石头重量最大时15001,所以就可以设置为这个,这里还包含了 初始化,那就是全部初始化为0。因为这个在递推公式中它是通过比较大小来去确定的,而且重量也没有负数,所以设置为0,这里的下标表示背包的大小,整体表示价值;

(2)递推公式:

                // 4、递推公式,与之前的分割数字相同
                // 也是求能够凑满这个背包的最大价值
                dp[j] = max(dp[j], dp[j - stones[i]] + stones[i]);

以为滚动dp数组;

(3)遍历顺序:

包含在代码中;

2、整体代码如下:

class Solution {
public:
    int lastStoneWeightII(vector<int>& stones) {
        // 本题的关键就是把石头尽量分成两堆,然后去用dp来找相对应的一半的值
        // 就是尽量让两个石头相撞
        // 1、定义dp数组
        vector<int> dp(15001, 0);
        // 统计出目标值target
        int sum = 0;
        int target = 0;
        for (int i : stones) {
            sum += i;
        }
        target = sum / 2;

        // 2、初始化dp数组,因为是通过比较来取值,多以就是取一个非负的最小数就行了
        // vector<int> dp(151, 0);

        // 3、遍历顺序
        for (int i = 0; i < stones.size(); i++) {
            // 倒序遍历,防止重复元素叠加
            for (int j = target; j >= stones[i]; j--) {
                // 4、递推公式,与之前的分割数字相同
                // 也是求能够凑满这个背包的最大价值
                dp[j] = max(dp[j], dp[j - stones[i]] + stones[i]);
            }
        }
        // 5、打印dp数组
        // for (auto i : dp) {
        //     cout << i << endl;
        // }
        
        return (sum - 2 * dp[target]);
    }
};

 二、目标和

1、思路:

这个题目,太抽象了!

还是dp五部曲:

(1)确定dp数组:

vector<vector<int>> dp(nums.size() + 1, vector<int>(targetSum + 1, 0));

这里dp数组的值代表“j”背包大小的情况下有多少种组合

i代表nums的物品 == 数字

为什么这里是的物品多了一个? 因为这里需要把有一个为没有物品的情况,即0;

(2)初始化:

   dp[0][0] = 1;

这里的初始化就是target是0,然后数组也是没有的情况,就返回1;

(3)递推公式:

dp[i][j] = dp[i - 1][j];
if (j >= nums[i - 1]) {
    dp[i][j] += dp[i - 1][j - nums[i - 1]];
}

1、继承上一类情况的大小 

2、如果有j(容量)大于等于数值的大小时,就可以累加上,背包j - nums[i -1]大小的情况下的种数。

(4)其他两种在代码中展示;

2、整体代码如下:

class Solution {
public:
    int findTargetSumWays(vector<int>& nums, int target) {
        int sum = 0;
        for (int i : nums) {
            sum += i;
        }
        // 寻找不出适当的构造方法
        // 这个可以推导出来
        if ((sum + target) % 2 != 0 || (sum + target) < 0) {
            return 0;
        }
        int targetSum = (sum + target) / 2;
        
        // 1、创建dp数组;
        /*
            这里dp数组的值代表“j”背包大小的情况下有多少种组合
            i代表nums的物品 == 数字
            为什么这里是的物品多了一个?
            因为这里需要把有一个为没有物品的情况,即0
        */
        vector<vector<int>> dp(nums.size() + 1, vector<int>(targetSum + 1, 0));
        // 2、初始化,这里的初始化就是target是0,然后数组也是没有的情况,就返回1
        dp[0][0] = 1;
        
        // 3、遍历顺序
        for (int i = 1; i <= nums.size(); i++) {
            for (int j = 0; j <= targetSum; j++) {
                // 4、递推公式
                // 继承上一类情况的大小
                dp[i][j] = dp[i - 1][j];
                if (j >= nums[i - 1]) {
                    // 如果有j(容量)大于等于数值的大小时,就可以累加上,背包j - nums[i -1]大小的情况下的种数。
                    dp[i][j] += dp[i - 1][j - nums[i - 1]];
                }
            }
        }
        // 5、打印递推数组
        // for (auto i : dp) {
        //     for (auto j : i) {
        //         cout << j << " ";
        //     }
        //     cout << endl;
        // }
        return dp[nums.size()][targetSum];
    }
};

四、一和零

1、思路:

这个题目,主要是通过对dp数组的操作,能够完成对0和1的重量以及价值的计算,来达到解决方案;

(1)dp数组:

vector<vector<int>> dp(m + 1, vector<int>(n + 1, 0));

这里是一个二维的dp数组,然后m + 1是定义i的0的数量,n + 1就是1的数量;

默认初始化为0,因为要进行max比较,还有dp[0][0]也是0,因为容量是0,固然价值也是0;

(2)遍历顺序:

 for (auto str : strs) {
            // 先计算重量
            int zeroNum = 0;
            int oneNum = 0;
            for (auto s : str) {
                if (s == '0') {
                    zeroNum++;
                } else {
                    oneNum++;
                }
            }

首先计算的是每个数组的物品的重量大小 ;然后在开始遍历

 for (int i = m; i >= zeroNum; i--) {
                for (int j = n; j >= oneNum; j--) {
                    dp[i][j] = max(dp[i][j], dp[i - zeroNum][j - oneNum] + 1);
                }
            }

这里采用的是倒序遍历,防止物品重复添加!

(3)递推公式:

dp[i][j] = max(dp[i][j], dp[i - zeroNum][j - oneNum] + 1);

与之前的01背包相似,也是现在的情况与之前 i - zeroNum、j - oneNum这两个容量下的价值 + 1;

价值就是字符串的数量;

2、整体代码如下:

class Solution {
public:
    int findMaxForm(vector<string>& strs, int m, int n) {
        // 1、确定dp数组
        vector<vector<int>> dp(m + 1, vector<int>(n + 1, 0)); // 默认初始化为0
        // 这解释一下:
        /*
            这里是一个二维的dp数组,然后m + 1是定义i的0的数量,n + 1就是1的数量
        */
        // 遍历物品
        for (auto str : strs) {
            // 先计算重量
            int zeroNum = 0;
            int oneNum = 0;
            for (auto s : str) {
                if (s == '0') {
                    zeroNum++;
                } else {
                    oneNum++;
                }
            }
            // 倒序遍历:防止物品重复添加
            for (int i = m; i >= zeroNum; i--) {
                for (int j = n; j >= oneNum; j--) {
                    dp[i][j] = max(dp[i][j], dp[i - zeroNum][j - oneNum] + 1);
                }
            }
        }
        return dp[m][n];
    }
};

今日学习时间:1.5小时

leave message: 

 If you want to be respected by others, the great thing is to respect yourself. Only by self-respect will you comel others to respect you.

如果你想得到别人的尊重,最重要的是尊重自己。只有这样,只有自我尊重,才会使别人尊重你。

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值