蓝桥杯练习题笔记(四)
1. 蛇形方阵
题目描述
给出一个不大于
9
9
9 的正整数
n
n
n,输出
n
×
n
n\times n
n×n
的蛇形方阵。
从左上角填上 1 1 1 开始,顺时针方向依次填入数字,如同样例所示。注意每个数字有都会占用 3 3 3 个字符,前面使用空格补齐。
输入格式
输入一个正整数 n n n,含义如题所述。
输出格式
输出符合题目要求的蛇形矩阵。
样例 #1
样例输入 #1
4
样例输出 #1
1 2 3 4
12 13 14 5
11 16 15 6
10 9 8 7
提示
数据保证, 1 ≤ n ≤ 9 1 \leq n \leq 9 1≤n≤9。
- 别人公开的题解:
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
int a[20][20],f=0;//a记录表格,f记录当前方向(右、下、左、上)
int n,x=1,y=1;//x,y记录当前坐标
const int dir[4][2]={{0,1},{1,0},{0,-1},{-1,0}};//方向数组:右、下、左、上(要按顺序)
bool isValid(int x,int y){//判断是否合法:不越界且这个地方没有人
return x>=1 && x<=n && y>=1 && y<=n && !a[x][y];
}
int main(){
cin>>n;
for(int i=1;i<=n*n;i++){
a[x][y]=i;//填充
if(i==n*n) break;//i==n^2后面的就没用了
if(!isValid(x+dir[f][0],y+dir[f][1])){//判断:如果要走的不合法
f=(f+1)%4;//换一个方向,要%4不能超过dir的范围
}
x+=dir[f][0];//下一个
y+=dir[f][1];
}
for(int i=1;i<=n;i++){//按题意输出
for(int j=1;j<=n;j++){
printf("%3d",a[i][j]);
}
cout<<endl;
}
return 0;
}
2. 数字反转(升级版)
题目背景
以下为原题面,仅供参考:
给定一个数,请将该数各个位上数字反转得到一个新数。
这次与 NOIp2011 普及组第一题不同的是:这个数可以是小数,分数,百分数,整数。整数反转是将所有数位对调;小数反转是把整数部分的数反转,再将小数部分的数反转,不交换整数部分与小数部分;分数反转是把分母的数反转,再把分子的数反转,不交换分子与分母;百分数的分子一定是整数,百分数只改变数字部分。整数新数也应满足整数的常见形式,即除非给定的原数为零,否则反转后得到的新数的最高位数字不应为零;小数新数的末尾不为 0 0 0(除非小数部分除了 0 0 0 没有别的数,那么只保留1个 0 0 0);分数不约分,分子和分母都不是小数(约分滴童鞋抱歉了,不能过哦。输入数据保证分母不为 0 0 0),本次没有负数。
题目描述
给定一个数,请将该数各个位上数字反转得到一个新数。
这次与 NOIp2011 普及组第一题不同的是:这个数可以是小数,分数,百分数,整数。
-
整数反转是将所有数位对调。
-
小数反转是把整数部分的数反转,再将小数部分的数反转,不交换整数部分与小数部分。
-
分数反转是把分母的数反转,再把分子的数反转,不交换分子与分母。
-
百分数的分子一定是整数,百分数只改变数字部分。
输入格式
一个实数 s s s
输出格式
一个实数,即 s s s 的反转数
样例 #1
样例输入 #1
5087462
样例输出 #1
2647805
样例 #2
样例输入 #2
600.084
样例输出 #2
6.48
样例 #3
样例输入 #3
700/27
样例输出 #3
7/72
样例 #4
样例输入 #4
8670%
样例输出 #4
768%
提示
【数据范围】
- 对于 25 % 25\% 25% 的数据, s s s 是整数,不大于 20 20 20 位;
- 对于 25 % 25\% 25% 的数据, s s s 是小数,整数部分和小数部分均不大于 10 10 10 位;
- 对于 25 % 25\% 25% 的数据, s s s 是分数,分子和分母均不大于 10 10 10 位;
- 对于 25 % 25\% 25% 的数据, s s s 是百分数,分子不大于 19 19 19 位。
【数据保证】
-
对于整数翻转而言,整数原数和整数新数满足整数的常见形式,即除非给定的原数为零,否则反转后得到的新数和原来的数字的最高位数字不应为零。
-
对于小数翻转而言,其小数点前面部分同上,小数点后面部分的形式,保证满足小数的常见形式,也就是末尾没有多余的 0 0 0(小数部分除了 0 0 0 没有别的数,那么只保留 1 1 1 个 0 0 0。若反转之后末尾数字出现 0 0 0,请省略多余的 0 0 0)
-
对于分数翻转而言,分数不约分,分子和分母都不是小数。输入的分母不为 0 0 0。与整数翻转相关规定见上。
-
对于百分数翻转而言,见与整数翻转相关内容。
数据不存在负数。
- 公开的题解:
#include <string>
#include <iostream>
#include <algorithm>
// 自己写的反转函数,返回反转并去掉前导零之后的字符串
std::string reverse(std::string s) {
int zeroCount = 0;
std::reverse(s.begin(), s.end()); // 反转
// 范围 for 循环,用于统计前导零个数
for (auto i : s)
if (i == 48) ++zeroCount;
else break;
s.erase(s.begin(), s.begin() + zeroCount);
return (s != "" ? s : "0"); // 特判
}
// 用于去掉后导零
std::string deleteTail(std::string s) {
int zeroCount = 0;
for (int i = s.size() - 1; i >= 0; --i)
if (s[i] == 48) ++zeroCount;
else break;
s.erase(s.end() - zeroCount, s.end());
return (s != "" ? s : "0");
}
int main() {
std::string s;
std::cin >> s;
if (s.back() == '%') {
std::cout << reverse(s.substr(0, s.size() - 1)) << "%" << std::endl;
return 0;
}
for (auto i : s) {
std::string left, right;
// 其实还有一种不需要遍历字符串的做法,直接 find() 即可,但是当时没想到
if (i == '/') {
left = s.substr(0, s.find("/"));
right = s.substr(s.find("/") + 1);
std::cout << reverse(left) << "/" << reverse(right) << std::endl;
return 0;
}
if (i == '.') {
left = s.substr(0, s.find("."));
right = s.substr(s.find(".") + 1);
std::cout << reverse(left) << "." << deleteTail(reverse(right)) << std::endl;
return 0;
}
}
// 最后剩下的一种情况是正整数
std::cout << reverse(s) << std::endl;
return 0;
}
std::reverse(),用于反转序列。需要提供首尾迭代器作为参数。
std::string::erase(),传入两个迭代器 l,r,清除[l,r)范围内的字符。
std::string::substr(),用于提取子字符串,用法与前者类似。
std::string::find(),用来查找字串在母串中第一次出现的位置。
3. 压缩技术(续集版)
题目描述
设某汉字由 N × N N \times N N×N 的 0 \texttt 0 0 和 1 \texttt 1 1 的点阵图案组成。
我们依照以下规则生成压缩码。连续一组数值:从汉字点阵图案的第一行第一个符号开始计算,按书写顺序从左到右,由上至下。第一个数表示连续有几个 0 \texttt 0 0,第二个数表示接下来连续有几个 1 \texttt 1 1,第三个数再接下来连续有几个 0 \texttt 0 0,第四个数接着连续几个 1 \texttt 1 1,以此类推……
例如: 以下汉字点阵图案:
0001000
0001000
0001111
0001000
0001000
0001000
1111111
对应的压缩码是: 7 3 1 6 1 6 4 3 1 6 1 6 1 3 7 \texttt {7 3 1 6 1 6 4 3 1 6 1 6 1 3 7} 7 3 1 6 1 6 4 3 1 6 1 6 1 3 7 (第一个数是 N N N ,其余各位表示交替表示0和1 的个数,压缩码保证 N × N = N \times N= N×N= 交替的各位数之和)
输入格式
汉字点阵图(点阵符号之间不留空格)。
输出格式
输出一行,压缩码。
样例 #1
样例输入 #1
0001000
0001000
0001111
0001000
0001000
0001000
1111111
样例输出 #1
7 3 1 6 1 6 4 3 1 6 1 6 1 3 7
提示
数据保证, 3 ≤ N ≤ 200 3\leq N\leq 200 3≤N≤200。
- 看到个用字符串来做的,就来记录一下
#include <stdio.h>
#include <string.h>
int main()
{
int i,n,num,sum;
char text[40000],str[200];//text:最终字符串,str:缓冲字符串
scanf("%s",str);
n=strlen(str);//输入第一个字符串,存入缓冲字符串,并计算n值
strcat(text,str);//将str连接到text后,其实也可以用strcpy的,用处相同
for(i=2;i<=n;i++)//因为已经连接第一个了,因此循环从第二行字符开始
{
scanf("%s",str);
strcat(text,str);//输入并连接
}
printf("%d ",n);//输出n值,记住在每个输出后带上空格
for(i=0,sum=0,num='0';i<=strlen(text);i++)//从text[i]开始循环
if(num==text[i])判断这个字符是否与上一个字符相等(第一个字符与‘0’做判断)
sum++;//如果相等,sum加一
else
{
num=text[i];
printf("%d ",sum);//反之,输出sum值(带空格),并初始化num与text
sum=1;
}
return 0;
}
4. 回文质数 Prime Palindromes
题目描述
因为 151 151 151 既是一个质数又是一个回文数(从左到右和从右到左是看一样的),所以 151 151 151 是回文质数。
写一个程序来找出范围 [ a , b ] ( 5 ≤ a < b ≤ 100 , 000 , 000 ) [a,b] (5 \le a < b \le 100,000,000) [a,b](5≤a<b≤100,000,000)(一亿)间的所有回文质数。
输入格式
第一行输入两个正整数 a a a 和 b b b。
输出格式
输出一个回文质数的列表,一行一个。
样例 #1
样例输入 #1
5 500
样例输出 #1
5
7
11
101
131
151
181
191
313
353
373
383
提示
Hint 1: Generate the palindromes and see if they are prime.
提示 1: 找出所有的回文数再判断它们是不是质数(素数).
Hint 2: Generate palindromes by combining digits properly. You might need more than one of the loops like below.
提示 2: 要产生正确的回文数,你可能需要几个像下面这样的循环。
题目翻译来自NOCOW。
USACO Training Section 1.5
产生长度为 5 5 5 的回文数:
for (d1 = 1; d1 <= 9; d1+=2) { // 只有奇数才会是素数
for (d2 = 0; d2 <= 9; d2++) {
for (d3 = 0; d3 <= 9; d3++) {
palindrome = 10000*d1 + 1000*d2 +100*d3 + 10*d2 + d1;//(处理回文数...)
}
}
}
- 感觉这个题解很有逻辑,摘过来记录记录
#include<bits/stdc++.h>
using namespace std;
int l, r;
bool check1(int x)//检查位数
{
if((1000 <= x && x <= 9999) || (100000 <= x && x <= 999999)) return 0;//不知道&&和||优先级的可以打个括号
return 1;
}
bool check2(int x)//检查是否回文
{
int a[20], flag = 1;//反正开得下,多开点
while (x > 0)
{
a[flag] = x % 10;
x /= 10;
flag++;
}
for (int i = 1; i <= flag / 2; i++)
if(a[i] != a[flag-i]) return 0;//不符合回文
return 1;
}
bool check3(int x)//检查是否为质数
{
if(x == 2) return 1;
for(int i = 2; i <= sqrt(x); i++)
if(x % i == 0) return 0;
return 1;
}
int main()
{
scanf("%d %d", &l, &r);
if(l == 2) printf("2\n");//一定要注意2!!!
if(l % 2 == 0) l++;
r = min(9999999, r);//再大的数都不可能是回文质数
for(int i = l; i <= r; i = i + 2)//枚举每一个奇数
{
if(check1(i) == 0) continue;
if(check2(i) == 0) continue;
if(check3(i) == 0) continue;
printf("%d\n", i);//printf会比cout快很多
}
return 0;
}
5. A+B Problem(高精)
题目描述
高精度加法,相当于 a+b problem,不用考虑负数。
输入格式
分两行输入。 a , b ≤ 1 0 500 a,b \leq 10^{500} a,b≤10500。
输出格式
输出只有一行,代表 a + b a+b a+b 的值。
样例 #1
样例输入 #1
1
1
样例输出 #1
2
样例 #2
样例输入 #2
1001
9099
样例输出 #2
10100
提示
20 % 20\% 20% 的测试数据, 0 ≤ a , b ≤ 1 0 9 0\le a,b \le10^9 0≤a,b≤109;
40 % 40\% 40% 的测试数据, 0 ≤ a , b ≤ 1 0 18 0\le a,b \le10^{18} 0≤a,b≤1018。
- 用字符串处理大数的代码,觉得很简单易懂就摘录了:
#include<bits/stdc++.h>//←万能头文件
using namespace std;//没有这个,不识别cin和cout
string s1,s2;//字符串定义
int l1,l2,l,i,a[10005],b[10005],c[10005];
int main()
{
cin>>s1>>s2;//输入
l1=s1.length();//获取s1的字符串长度
for(i=0;i<l1;i++) a[l1-i]=s1[i]-48;//减48是因为char比int值大48
l2=s2.length();//获取s2的字符串长度
for(i=0;i<l2;i++) b[l2-i]=s2[i]-48;//同上
l=l1<l2?l2:l1;//←三目运算
for(i=1;i<=l;i++)
{
c[i]=a[i]+b[i]+c[i];
c[i+1]=c[i]/10;//进位,将前一位得到的整数乘10累加到后一位
c[i]=c[i]%10;//重新整理c数组
}
if(c[l+1]>0) l++;//判断
for(i=l;i>=1;i--) cout<<c[i];//输出
return 0;//要养成一个好习惯
}