蓝桥杯练习题笔记(四)

蓝桥杯练习题笔记(四)


1. 蛇形方阵

题目描述

给出一个不大于 9 9 9 的正整数 n n n,输出 n × n n\times n n×n
的蛇形方阵。

从左上角填上 1 1 1 开始,顺时针方向依次填入数字,如同样例所示。注意每个数字有都会占用 3 3 3 个字符,前面使用空格补齐。

输入格式

输入一个正整数 n n n,含义如题所述。

输出格式

输出符合题目要求的蛇形矩阵。

样例 #1

样例输入 #1

4

样例输出 #1

1  2  3  4
 12 13 14  5
 11 16 15  6
 10  9  8  7

提示

数据保证, 1 ≤ n ≤ 9 1 \leq n \leq 9 1n9

  • 别人公开的题解:
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
int a[20][20],f=0;//a记录表格,f记录当前方向(右、下、左、上) 
int n,x=1,y=1;//x,y记录当前坐标 
const int dir[4][2]={{0,1},{1,0},{0,-1},{-1,0}};//方向数组:右、下、左、上(要按顺序) 
bool isValid(int x,int y){//判断是否合法:不越界且这个地方没有人 
	return x>=1 && x<=n && y>=1 && y<=n && !a[x][y];
}
int main(){
	cin>>n;
	for(int i=1;i<=n*n;i++){
		a[x][y]=i;//填充 
		if(i==n*n) break;//i==n^2后面的就没用了 
		if(!isValid(x+dir[f][0],y+dir[f][1])){//判断:如果要走的不合法 
			f=(f+1)%4;//换一个方向,要%4不能超过dir的范围 
		}
		x+=dir[f][0];//下一个 
		y+=dir[f][1];
	}
	for(int i=1;i<=n;i++){//按题意输出 
		for(int j=1;j<=n;j++){
			printf("%3d",a[i][j]);
		}
		cout<<endl;
	}
	return 0;
}

2. 数字反转(升级版)

题目背景

以下为原题面,仅供参考:

给定一个数,请将该数各个位上数字反转得到一个新数。

这次与 NOIp2011 普及组第一题不同的是:这个数可以是小数,分数,百分数,整数。整数反转是将所有数位对调;小数反转是把整数部分的数反转,再将小数部分的数反转,不交换整数部分与小数部分;分数反转是把分母的数反转,再把分子的数反转,不交换分子与分母;百分数的分子一定是整数,百分数只改变数字部分。整数新数也应满足整数的常见形式,即除非给定的原数为零,否则反转后得到的新数的最高位数字不应为零;小数新数的末尾不为 0 0 0(除非小数部分除了 0 0 0 没有别的数,那么只保留1个 0 0 0);分数不约分,分子和分母都不是小数(约分滴童鞋抱歉了,不能过哦。输入数据保证分母不为 0 0 0),本次没有负数。

题目描述

给定一个数,请将该数各个位上数字反转得到一个新数。

这次与 NOIp2011 普及组第一题不同的是:这个数可以是小数,分数,百分数,整数。

  • 整数反转是将所有数位对调。

  • 小数反转是把整数部分的数反转,再将小数部分的数反转,不交换整数部分与小数部分。

  • 分数反转是把分母的数反转,再把分子的数反转,不交换分子与分母。

  • 百分数的分子一定是整数,百分数只改变数字部分。

输入格式

一个实数 s s s

输出格式

一个实数,即 s s s 的反转数

样例 #1

样例输入 #1

5087462

样例输出 #1

2647805

样例 #2

样例输入 #2

600.084

样例输出 #2

6.48

样例 #3

样例输入 #3

700/27

样例输出 #3

7/72

样例 #4

样例输入 #4

8670%

样例输出 #4

768%

提示

【数据范围】

  • 对于 25 % 25\% 25% 的数据, s s s 是整数,不大于 20 20 20 位;
  • 对于 25 % 25\% 25% 的数据, s s s 是小数,整数部分和小数部分均不大于 10 10 10 位;
  • 对于 25 % 25\% 25% 的数据, s s s 是分数,分子和分母均不大于 10 10 10 位;
  • 对于 25 % 25\% 25% 的数据, s s s 是百分数,分子不大于 19 19 19 位。

【数据保证】

  • 对于整数翻转而言,整数原数和整数新数满足整数的常见形式,即除非给定的原数为零,否则反转后得到的新数和原来的数字的最高位数字不应为零。

  • 对于小数翻转而言,其小数点前面部分同上,小数点后面部分的形式,保证满足小数的常见形式,也就是末尾没有多余的 0 0 0(小数部分除了 0 0 0 没有别的数,那么只保留 1 1 1 0 0 0。若反转之后末尾数字出现 0 0 0,请省略多余的 0 0 0

  • 对于分数翻转而言,分数不约分,分子和分母都不是小数。输入的分母不为 0 0 0。与整数翻转相关规定见上。

  • 对于百分数翻转而言,见与整数翻转相关内容。

数据不存在负数。

  • 公开的题解:
#include <string>
#include <iostream>
#include <algorithm>

// 自己写的反转函数,返回反转并去掉前导零之后的字符串
std::string reverse(std::string s) {
	int zeroCount = 0;
	std::reverse(s.begin(), s.end()); // 反转
    // 范围 for 循环,用于统计前导零个数
	for (auto i : s)
		if (i == 48) ++zeroCount;
		else break;
	s.erase(s.begin(), s.begin() + zeroCount);
	return (s != "" ? s : "0"); // 特判
}

// 用于去掉后导零
std::string deleteTail(std::string s) { 
	int zeroCount = 0;
	for (int i = s.size() - 1; i >= 0; --i)
		if (s[i] == 48) ++zeroCount;
		else break;
	s.erase(s.end() - zeroCount, s.end());
	return (s != "" ? s : "0");
}

int main() {
	std::string s;
	std::cin >> s;
	if (s.back() == '%') {
		std::cout << reverse(s.substr(0, s.size() - 1)) << "%" << std::endl;
		return 0;
	}
	for (auto i : s) {
		std::string left, right;
        // 其实还有一种不需要遍历字符串的做法,直接 find() 即可,但是当时没想到
		if (i == '/') {
			left = s.substr(0, s.find("/"));
			right = s.substr(s.find("/") + 1);
			std::cout << reverse(left) << "/" << reverse(right) << std::endl;
			return 0;
		}
		if (i == '.') {
			left = s.substr(0, s.find("."));
			right = s.substr(s.find(".") + 1);
			std::cout << reverse(left) << "." << deleteTail(reverse(right)) << std::endl;
			return 0;
		}
	}
    // 最后剩下的一种情况是正整数
	std::cout << reverse(s) << std::endl;
	return 0;
}

std::reverse(),用于反转序列。需要提供首尾迭代器作为参数。
std::string::erase(),传入两个迭代器 l,r,清除[l,r)范围内的字符。
std::string::substr(),用于提取子字符串,用法与前者类似。
std::string::find(),用来查找字串在母串中第一次出现的位置。

3. 压缩技术(续集版)

题目描述

设某汉字由 N × N N \times N N×N 0 \texttt 0 0 1 \texttt 1 1 的点阵图案组成。

我们依照以下规则生成压缩码。连续一组数值:从汉字点阵图案的第一行第一个符号开始计算,按书写顺序从左到右,由上至下。第一个数表示连续有几个 0 \texttt 0 0,第二个数表示接下来连续有几个 1 \texttt 1 1,第三个数再接下来连续有几个 0 \texttt 0 0,第四个数接着连续几个 1 \texttt 1 1,以此类推……

例如: 以下汉字点阵图案:

0001000
0001000
0001111
0001000
0001000
0001000
1111111

对应的压缩码是: 7   3   1   6   1   6   4   3   1   6   1   6   1   3   7 \texttt {7 3 1 6 1 6 4 3 1 6 1 6 1 3 7} 7 3 1 6 1 6 4 3 1 6 1 6 1 3 7 (第一个数是 N N N ,其余各位表示交替表示0和1 的个数,压缩码保证 N × N = N \times N= N×N= 交替的各位数之和)

输入格式

汉字点阵图(点阵符号之间不留空格)。

输出格式

输出一行,压缩码。

样例 #1

样例输入 #1

0001000
0001000
0001111
0001000
0001000
0001000
1111111

样例输出 #1

7 3 1 6 1 6 4 3 1 6 1 6 1 3 7

提示

数据保证, 3 ≤ N ≤ 200 3\leq N\leq 200 3N200

  • 看到个用字符串来做的,就来记录一下
#include <stdio.h>
#include <string.h>
int main()
{
    int i,n,num,sum;
    char text[40000],str[200];//text:最终字符串,str:缓冲字符串
    scanf("%s",str);
    n=strlen(str);//输入第一个字符串,存入缓冲字符串,并计算n值
    strcat(text,str);//将str连接到text后,其实也可以用strcpy的,用处相同
    for(i=2;i<=n;i++)//因为已经连接第一个了,因此循环从第二行字符开始
    {
        scanf("%s",str);
        strcat(text,str);//输入并连接
    }
    printf("%d ",n);//输出n值,记住在每个输出后带上空格
    for(i=0,sum=0,num='0';i<=strlen(text);i++)//从text[i]开始循环
        if(num==text[i])判断这个字符是否与上一个字符相等(第一个字符与‘0’做判断)
            sum++;//如果相等,sum加一
        else
        {
            num=text[i];
            printf("%d ",sum);//反之,输出sum值(带空格),并初始化num与text
            sum=1;
        }
    return 0;
}

4. 回文质数 Prime Palindromes

题目描述

因为 151 151 151 既是一个质数又是一个回文数(从左到右和从右到左是看一样的),所以 151 151 151 是回文质数。

写一个程序来找出范围 [ a , b ] ( 5 ≤ a < b ≤ 100 , 000 , 000 ) [a,b] (5 \le a < b \le 100,000,000) [a,b](5a<b100,000,000)(一亿)间的所有回文质数。

输入格式

第一行输入两个正整数 a a a b b b

输出格式

输出一个回文质数的列表,一行一个。

样例 #1

样例输入 #1

5 500

样例输出 #1

5
7
11
101
131
151
181
191
313
353
373
383

提示

Hint 1: Generate the palindromes and see if they are prime.

提示 1: 找出所有的回文数再判断它们是不是质数(素数).

Hint 2: Generate palindromes by combining digits properly. You might need more than one of the loops like below.

提示 2: 要产生正确的回文数,你可能需要几个像下面这样的循环。

题目翻译来自NOCOW。

USACO Training Section 1.5

产生长度为 5 5 5 的回文数:

for (d1 = 1; d1 <= 9; d1+=2) {    // 只有奇数才会是素数
     for (d2 = 0; d2 <= 9; d2++) {
         for (d3 = 0; d3 <= 9; d3++) {
           palindrome = 10000*d1 + 1000*d2 +100*d3 + 10*d2 + d1;//(处理回文数...)
         }
     }
 }

  • 感觉这个题解很有逻辑,摘过来记录记录
#include<bits/stdc++.h>
using namespace std;
int l, r;
bool check1(int x)//检查位数
{
	if((1000 <= x && x <= 9999) || (100000 <= x && x <= 999999)) return 0;//不知道&&和||优先级的可以打个括号 
	return 1;
} 
bool check2(int x)//检查是否回文
{
	int a[20], flag = 1;//反正开得下,多开点
	while (x > 0)
	{
		a[flag] = x % 10;
		x /= 10;
		flag++;
	} 
	for (int i = 1; i <= flag / 2; i++)
		if(a[i] != a[flag-i]) return 0;//不符合回文 
	return 1;
} 
bool check3(int x)//检查是否为质数 
{
	if(x == 2) return 1;
	for(int i = 2; i <= sqrt(x); i++)
		if(x % i == 0) return 0;
	return 1;
}
int main()
{
	scanf("%d %d", &l, &r);
	if(l == 2) printf("2\n");//一定要注意2!!! 
	if(l % 2 == 0) l++; 
	r = min(9999999, r);//再大的数都不可能是回文质数
	for(int i = l; i <= r; i = i + 2)//枚举每一个奇数
	{
		if(check1(i) == 0) continue;
		if(check2(i) == 0) continue;
		if(check3(i) == 0) continue;
		printf("%d\n", i);//printf会比cout快很多 
	}	
	return 0;
}

5. A+B Problem(高精)

题目描述

高精度加法,相当于 a+b problem,不用考虑负数

输入格式

分两行输入。 a , b ≤ 1 0 500 a,b \leq 10^{500} a,b10500

输出格式

输出只有一行,代表 a + b a+b a+b 的值。

样例 #1

样例输入 #1

1
1

样例输出 #1

2

样例 #2

样例输入 #2

1001
9099

样例输出 #2

10100

提示

20 % 20\% 20% 的测试数据, 0 ≤ a , b ≤ 1 0 9 0\le a,b \le10^9 0a,b109

40 % 40\% 40% 的测试数据, 0 ≤ a , b ≤ 1 0 18 0\le a,b \le10^{18} 0a,b1018

  • 用字符串处理大数的代码,觉得很简单易懂就摘录了:
#include<bits/stdc++.h>//←万能头文件
using namespace std;//没有这个,不识别cin和cout
string s1,s2;//字符串定义
int l1,l2,l,i,a[10005],b[10005],c[10005];
int main()
{
    cin>>s1>>s2;//输入
    l1=s1.length();//获取s1的字符串长度
    for(i=0;i<l1;i++) a[l1-i]=s1[i]-48;//减48是因为char比int值大48 
    l2=s2.length();//获取s2的字符串长度
    for(i=0;i<l2;i++) b[l2-i]=s2[i]-48;//同上

    l=l1<l2?l2:l1;//←三目运算
    for(i=1;i<=l;i++)
     {
        c[i]=a[i]+b[i]+c[i];
        c[i+1]=c[i]/10;//进位,将前一位得到的整数乘10累加到后一位
        c[i]=c[i]%10;//重新整理c数组
    }
    if(c[l+1]>0) l++//判断
    for(i=l;i>=1;i--) cout<<c[i];//输出
    return 0;//要养成一个好习惯
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值