自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(50)
  • 收藏
  • 关注

原创 第八章 排序

8.1.1 排序的定义 排序,就是重新排列表中的元素,使表中的元素满足按关键字有序的过程。为了查找方便,通常希望计算机中的表是按关键字有序的。排序的确切定义如下: 输入:\( n \) 个记录 \( R_1, R_2, \cdots, R_n \),对应的关键字为 \( k_1, k_2, \cdots, k_n \)。 输出:输入序列的一个重排 \( R_1', R_2', \cdots, R_n' \),使得 \( k_1' \leq k_2' \leq \cd

2025-08-18 14:28:38 482

原创 第七章 查找

7.1 查找的基本概念 1)查找。在数据集合中寻找满足某种条件的数据元素的过程称为查找。查找的结果一般分为两种:一是查找成功,即在数据集合中找到了满足条件的数据元素;二是查找失败。 2)查找表。用于查找的数据集合称为查找表,它由同一类型的数据元素(或记录)组成。对查找表的常见操作有:①查询符合条件的数据元素;②插入、删除数据元素。 3)静态查找表。若一个查找表的操作只涉及查找操作,则无须动态地修改查找表,此类查找表称为静态查找表。与此对应,需要动态地插入或删除的查找表称为动态查找表。适合静态查找表的

2025-08-18 14:15:54 367

原创 第六章 图

6.1 图的基本概念6.1.1 图的定义图 \( G \) 由顶点集 \( V \) 和边集 \( E \) 组成,记为 \( G = (V, E) \),其中 \( V(G) \) 表示图 \( G \) 中顶点的有限非空集;\( E(G) \) 表示图 \( G \) 中顶点之间的关系(边)集合。若 \( V = \{v_1, v_2, \cdots, v_n\} \),则用 \( |V| \) 表示图 \( G \) 中顶点的个数,\( E = \{(u, v)|u \in V, v \in V\}

2025-08-18 13:54:41 321

原创 第五章 树与二叉树

二叉树是一种特殊的树形结构,其特点是每个结点至多只有两棵子树(二叉树中不存在度大于2的结点),并且二叉树的子树有左右之分,其次序不能任意颠倒。与树相似,二叉树也以递归的形式定义。二叉树是\(n\)(\(n\geq0\))个结点的有限集合:① 或者为空二叉树,即\(n = 0\)。② 或者由一个根结点和两个互不相交的被称为根的左子树和右子树组成。左子树和右子树又分别是一棵二叉树。二叉树是有序树,若将其左、右子树颠倒,则成为另一棵不同的二叉树。即使树中结点只有一棵子树,也要区分它是左子树还是右子树。

2025-08-17 18:40:47 732

原创 第四章 串

串(string)是由零个或多个字符组成的有限序列。一般记为其中,\( S \) 是串名,单引号括起来的字符序列是串的值;\( a_i \) 可以是字母、数字或其他字符;串中字符的个数 \( n \) 称为串的长度。\( n = 0 \) 时的串称为空串(用 \( \varnothing \) 表示)。串中任意多个连续的字符组成的子序列称为该串的子串,包含子串的串称为主串。某个字符在串中的序号称为该字符在串中的位置。子串在主串中的位置以子串的第1个字符在主串中的位置来表示。

2025-08-17 14:13:04 976

原创 第三章 栈、队列和数组

*命题追踪** 栈的特点(2017) 栈(Stack)是只允许在一端进行插入或删除操作的线性表。首先栈是一种线性表,但限定这种线性表只能在某一端进行插入和删除操作,如图3.1所示。栈顶(Top):线性表允许进行插入和删除操作的那一端。栈底(Bottom):固定的,不允许进行插入和删除操作的另一端。空栈:不含任何元素的空表。**命题追踪** 入栈序列和出栈序列之间的关系(2022)**命题追踪** 特定条件下的出栈序列分析(2010、2011、2013、2018、2020)

2025-08-16 22:14:48 734

原创 第二章 线性表

*命题追踪** 单链表的应用(2009、2012、2013、2015、2016、2019)线性表的链式存储也称单链表,它是指通过一组任意的存储单元来存储线性表中的数据元素。为了建立数据元素之间的线性关系,对每个链表结点,除存放元素自身的信息外,还需要存放一个指向其后继的指针。单链表结点结构如图2.3所示,其中`data`为数据域,存放数据元素;`next`为指针域,存放其后继结点的地址。

2025-08-16 21:45:58 922

原创 第一章 绪论

1.1 数据结构的基本概念1.1 数据结构的基本概念1.1.1 基本概念和术语1. 数据数据是信息的载体,是描述客观事物属性的数、字符及所有能输入到计算机中并被计算机程序识别和处理的符号的集合。数据是计算机程序加工的原料。2. 数据元素数据元素是数据的基本单位,通常作为一个整体进行考虑和处理。一个数据元素可由若干数据项组成,数据项是构成数据元素的不可分割的最小单位。例如,学生记录就是一个数据元素,它由学号、姓名、性别等数据项组成。3. 数据对象。

2025-08-16 20:54:58 883

原创 第七章 参数估计

(2)似然函数两端取对数求导数;定义:使得似然函数取得最大值的。专题一 矩估计与最大似然估计。专题一 矩估计与最大似然估计。估计总体分布中的未知参数。专题二 估计量的评价标准。单调递增(单调递减),的一致(相合)估计量。,离散总体和连续总体。

2025-08-16 15:10:09 347

原创 第六章 统计初步

的简单随机样本,且两个样本相互独立,样本均值分别为。相互独立的标准正态分布 比 根号下。的简单随机样本,样本均值为。样本均值与样本方差的性质。专题二 三大抽样分布。

2025-08-16 14:49:50 353

原创 第五章 大数定律与极限定理

狄莫弗 - 拉普拉斯(Demoivre—Laplace)中心极限定理。列维 - 林德伯格(Levy—Lindeberg)中心极限定理。专题一 切比雪夫不等式。专题一 切比雪夫不等式。伯努利(Bernoulli)大数定律。辛钦(Khinchine)大数定律。专题三 中心极限定理。随机变量 偏离 其均值 的上界。专题二 大数定律。切比雪夫大数定律(大量数据)数轴上以a为中心,以。

2025-08-16 13:43:01 368

原创 第四章 数字特征

不相关 -> 不是独立 -> 范围更大,没有任何关系,不在直线上有可能在圆上。(求(X,Y)的函数的期望,将X,Y改写为x,y,函数照抄,乘联合概率密度作二重积分)(求X函数的期望,将X改成x,函数照抄,乘X的概率密度,再积分)【评注】显然期望为一阶原点矩,方差为二阶中心矩,协方差为。专题二 协方差与相关系数。专题一 期望与方差。专题一 期望与方差。5.八大分布的期望与方差。平方的期望-期望的平方。

2025-08-16 12:39:46 876

原创 第三章 二维随机变量及其分布

设$X = X(\omega)$,$Y = Y(\omega)$为样本空间$\Omega$上的两个随机变量,称$(X,Y)$为二维随机变量。设$(X,Y)$为二维随机变量,对任意实数$x,y$,称$F(x, y) = P{X \leq x,Y \leq y}$为$(X,Y)$的联合分布函数,简称分布函数。设二维随机变量$(X,Y)$的联合分布函数为$F(x, y)$,分别称为$(X,Y)$关于$X$和$Y$的边缘分布函数。2.联合分布函数的定义3.联合分布函数的性质4.边缘分布函数的定义。

2025-08-15 18:52:53 776

原创 第二章 一维随机变量及其分布

设试验的样本空间为$\Omega$,称实值函数$X = X(\omega),\omega\in\Omega$为随机变量,简记作$X$。设$X$为随机变量,对任意实数$x$,称$F(x)=P{X\leq x}$为$X$的分布函数。

2025-08-15 12:23:19 927

原创 第一章 随机事件与概率

其中 $|A|$ 为事件 $A$ 的样本点数,$|\Omega|$ 为样本空间的总样本点数。递推关系:$C_n^m = C_{n-1}^m + C_{n-1}^{m-1}$(6)差:事件A发生但事件B不发生,称为A与B的差,记作A-B。全排列($m = n$)的种数为 $n!注:一次试验只有一个样本点发生,若A中的样本点发生则称A发生。组合性质:对称性:$C_n^m = C_n^{n-m}$不包含任何样本点,每次试验都不发生,称为不可能事件。(5)对立:若事件A与B不能同时发生,但。例如:抛骰子,样本点。

2025-08-14 17:14:14 640

原创 第六章 二次型

(3)将不同特征值的特征向量分别 Schmidt 正交化,得。专题三 正定二次型与正定矩阵。(一)拉格朗日配方法(以三元二次型为例)专题一 二次型与标准型。总结:正负惯性指数即正负特征值的个数。(一阶顺序主子式:前。有相同的正、负惯性指数(惯性定理)专题二 合同矩阵。专题二 合同矩阵。则二次型化为(1)的形式。有相同的正、负特征值的个数。(1)若二次型含有平方项。(2)若二次型不含平方项。一一对应,二次型的矩阵。(1)求二次型的矩阵。

2025-08-13 15:59:52 429

原创 第五章 特征值与特征向量

n次方程n个根,重复的根重复写。为抽象矩阵:利用特征值与特征向量的定义或性质.专题一 特征值与特征向量的概念。有相同的行列式、秩、特征方程、特征值、迹;专题二 相似对角化。专题二 相似对角化。专题三 相似对角化。为n阶矩阵,若存在n阶可逆矩阵。1.特征值与特征向量的定义。4.特征值与特征向量的性质。5.特征值与特征向量的求法。2.相似对角化的充要条件。3.相似对角化的充分条件。3.实对称矩阵的分解定理。的单位正交的特征向量,则。

2025-08-12 19:12:41 979

原创 第四章 线性方程组

m个方程,n个未知数, --> m个方程变成n行,其他行变为0 --> 增广,秩=小的。(约束少,未知数的取值有更多可能性)m个未知数满足了,n-m行全是0即可了。,则线性方程组解的判定或求解可以利用 Cramer 法则。行数小于列数,即方程个数小于未知数个数,专题二 齐次线性方程组。有非零解的充分条件为m < n。有解的情况和非齐次有类似之处。A为系数矩阵,x为n维解向量。非齐次线性方程组的定义 含有。8.非齐次线性方程组解的判定。

2025-08-11 15:57:57 1212

原创 第三章 向量

专题四 极大线性无关组与向量组的秩。专题三 线性相关与线性无关。相当于n维向量的n维坐标,从0点出发。专题一 向量的基本运算。专题一 向量的基本运算。1.线性相关与线性无关的定义。5.向量组等价的充要条件。1.极大线性无关组的定义。3.极大线性无关组的求法。7.正交矩阵的充要条件。4.线性表示的充要条件。6.线性表示的充分条件。2.线性相关的充要条件。3.线性相关的充分条件。4.线性无关的充要条件。5.线性无关的充分条件。

2025-08-10 13:50:51 508

原创 第二章 矩阵

(2)pr:由AB=AC,得A(B-C)=0,行阶梯形:,每行第1个非0的数下面的元素均为0。专题一 矩阵的基本运算。专题一 矩阵的基本运算。(1)引入伴随矩阵是为了满足展开定理。的每个元素都乘以k 得到新矩阵。6.对称矩阵与反对称矩阵的定义。专题二 矩阵的逆。专题四 伴随矩阵。由mxn个数构成的m行n列的。(1)pr:AB=AC,左乘。3.初等变换与初等矩阵的性质。4.初等变换与初等矩阵的应用。因式分解的公式对矩阵不适用。

2025-08-03 16:42:59 493

原创 第七章 输入/输出系统

命题追踪 DMA 方式的效率分析及相关计算(2011、2018) 【例 7.4】假定计算机的主频为 500MHz,CPI 为 4,某外设的数据率为 40MB/s,I/O 接口中的数据端口为 32 位,采用 DMA 方式,每次 DMA 传送块大小为 1000B,且 DMA 预处理和后处理的总时钟周期数为 500,则 CPU 用于该外设 I/O 的时间占 CPU 总时间的百分比是多少?DMA方式是一种完全由硬件进行成组信息传送的控制方式,它具有程序中断方式的优点,即在数据准备阶段,CPU与外设并行工作。

2025-07-28 15:33:49 569

原创 第六章 总线

例如,总线工作频率为22MHz,总线宽度为16位,则总线带宽=22M×(16/8)=44MB/s。例如,有些总线没有单独的地址线,地址信息通过数据线来传送,这种情况称为地址/数据线复用。,主设备A获得总线使用权后,将命令、地址等信息发到总线上,经总线传输后由从设备B接收。在异步定时方式中,没有统一的时钟,也没有固定的时间间隔,完全依靠传送双方相互制约的。计算机有一个统一的时钟,以控制整个计算机的各个部件,总线也要受此时钟的控制。,一旦获准,设备B便将相应的数据送到总线上,由设备A接收。

2025-07-27 15:46:16 681

原创 第五章 中央处理器

如溢出标志(OF)、符号标志(SF)、零标志(ZF)、进位标志(CF)等。,如通用寄存器组(含基址/变址寄存器)、程序状态字寄存器、程序计数器;等功能部件构成一个有机的整体,根据指令的要求指挥全机协调工作。5.7.1 SISD、SIMD、MIMD的基本概念。,对用户是透明的,不可对这类寄存器编程,它们。主要功能是根据控制器送来的命令,对数据执行。寄存器(2010、2015、2021)等,如AX、BX、CX、DX、SP等。(这里的“1”是指一条指令的字节数);,而且在控制信号的作用下,寄存器中的。

2025-07-24 09:10:15 852

原创 第一章 行列式

【评注】由行列式的定义知2阶、3阶行列式满足对角线法则,即。推论 两行(或列)成比例,行列式为零.2.关于副对角线的上(或下)三角、副对角行列式。2.关于副对角线的上(或下)三角、副对角行列式。,故2阶成立.设n-1阶成立,证明n阶也成立.不同(大的数在小的数之前),则称这两个数。在1,2,··,n的一个全排列中,一个字母代表一个小块,看成一个数,第二行(后面的数-前面的数)的乘积。倍,再按第1列展开,提公因子,得。(2)两行(或列)互换,行列式。(1)行列互换,行列式的值。

2025-07-23 21:52:48 403

原创 第四章 指令系统

除这种安排外,还有其他多种扩展方法,如形成15条三地址指令、12条二地址指令、63条一地址指令和16条零地址指令,共106条指令,请读者自行分析。若指令字长为32位,操作码占8位,两个地址码字段各占12位,则每个操作数的直接寻址范围为。若指令字长为32位,操作码占8位,1个地址码字段占24位,则指令操作数的直接寻址范围为。若指令字长为32位,操作码占8位,3个地址码字段各占8位,则每个操作数的直接寻址范围为。若指令字长为32位,操作码占8位,4个地址码字段各占6位,则每个操作数的直接寻址范围为。

2025-07-22 10:53:11 879

原创 第三章 存储系统

当CPU要从存储器中存取数据时,先访问Cache,若不在Cache中,则访问主存,若不在主存中,则访问磁盘,此时,操作数从磁盘读出送到主存,然后从主存送到Cache。为了解决存储系统大容量、高速度和低成本这三个相互制约的矛盾,在计算机系统中,通常采用多级存储器结构,如图3.2所示。,其“只读”的概念没有保留,但仍保留了断电内容保留、随机读取特性,但其写入速度比读取速度慢得多。,也即Cache(或主存)中的内容只是主存(或辅存)中的内容的一部分。,单位为字/秒、字节/秒(B/s)或位/秒(b/s)。

2025-07-18 12:02:03 1000

原创 第二章 数据的表示和运算

若字长为n+1,则原码整数的表示范围为-(2的n次幂-1)<=x<=2的n次幂-1(关于原点对称)。因此,在定点数的编码和运算中。的转换也能方便地实现,十六进制数转换为八进制数(或八进制数转换为十六进制数)时,除基取余法(整数部分):整数部分除基取余,最先取得的余数为数的最低位,最后取得的。乘基取整法(小数部分):小数部分乘基取整,最先取得的整数为数的最高位,最后取得的。最终使总的位数为3或4的整数倍,然后分别用对应的八进制数或十六进制数取代。字长一般定为n+1位,其中n位为真值的位数,1位为符号位。

2025-07-15 12:49:56 899

原创 大三上学期课程设计培训(前端、后端、数据库)

了。

2025-07-14 19:29:17 908

原创 十三、多元积分学及其应用

(一)对弧长的线积分(第一类线积分)(一)对面积的面积分(第一类面积分)(二)对坐标的面积分(第二类面积分)(3)线积分与路径无关的判定与计算。(1)直接法(投影到坐标面)(1)直接法(投影到坐标面)(1)直接法(参数化曲线)(1)直接法(参数化平面)(1)直接法(参数化曲线)①先一后二(先单后重)②先二后一(先重后单)3.计算方法(平面)(3)利用轮换对称性。(4)空间线积分扩展。(二)对坐标的线积分。3.计算方法(平面)5.计算方法(空间)(3)利用轮换对称性。(3)补面用高斯公式。

2025-07-11 21:56:18 348

原创 十二、向量代数与空间解析几何 及 多元微分学在几何上的应用

一、向量代数一、向量代数1.数量级2.向量积3.混合积二、空间平面与直线1.平面方程2.直线方程3.平面与直线的位置关系4.点到面的距离。

2025-07-11 21:11:48 254

原创 十一、无穷级数

一、常数项级数一、常数项级数(一)级数的概念与性质1.级数的概念2.级数的性质(二)级数的审敛准则1.正项级数2.交错级数3.任意项级数二、幂级数(一)幂级数的收敛半径、收敛区间及收敛域(二)幂级数的性质1.有理运算性质。

2025-07-11 16:21:09 247

原创 十、二重积分

4. 利用变量的轮换对称性计算。(一)二重积分的概念及性质。3. 利用函数的奇偶性计算。1. 利用直角坐标计算。1. 二重积分的概念。2. 二重积分的性质。(二)二重积分的计算。2. 利用极坐标计算。

2025-07-11 11:10:15 201

原创 九、多元函数微分学

2. 二元函数偏导数的几何意义。2.连续、可偏导及可微的关系。一、多元函数的基本概念。一、多元函数的基本概念。(二)多元函数的连续性。(一)多元函数的极限。2. 连续函数的性质。

2025-07-10 22:19:39 144

原创 八、微分方程

3. 常系数非齐次线性微分方程。1. 线性微分方程的解的结构。(一)常微分方程的基本概念。2.不显含y的高阶微分方程。3.不显含x的高阶微分方程。2.常系数齐次线性微分方程。(三)可降阶的高阶方程。1.一般的高阶微分方程。(四)高阶线性微分方程。1.可分离变量的方程。3.一阶线性微分方程。

2025-07-10 21:48:47 392

原创 七、定积分的应用

(一)几何应用1.平面图形的面积2.旋转体体积。

2025-07-10 17:10:11 182

原创 六、定积分与反常积分

本文摘要:定积分与反常积分是微积分的重要内容。定积分部分包括定义、存在条件、几何意义、基本性质(不等式和中值定理)、积分上限函数,以及五种计算方法(牛顿-莱布尼兹公式、换元法、分部积分、奇偶性/周期性应用、公式运用)。反常积分分为两类:无穷区间积分和无界函数积分。这些内容构建了积分学的基础理论框架和计算方法体系。

2025-07-10 11:30:10 184

原创 ​五、不定积分

与基本初等函数的导数完全相反的部分省略,记得不定积分结果一定要加上常数C!(2)与√1-x²的倒数相关。(五)不定积分的基本公式。(1)与1-x²的倒数相关。(七)常用的高阶积分公式。

2025-07-09 14:49:39 347

原创 四、微分中值定理与导数的应用

四、微分中值定理与导数的应用。3. 函数的最大值与最小值。7. 曲线的弧微分与曲率。

2025-07-09 14:48:15 311

原创 ​三、导数与微分

弦是√1-x²的倒数;切是1+x²的倒数。4.函数乘积的 n 阶导数(莱布尼茨公式)(4) 指数函数(自然底数 e)(6) 自然对数函数(含绝对值)(3) 指数函数(一般底数)(5) 对数函数(一般底数)两个割(sec,csc)组成。余的倒数叫正,正的倒数叫余。1. 正弦函数的 n 阶导数。2. 余弦函数的 n 阶导数。3.函数和差的 n 阶导数。一个切(tan,cot)(四)常用的高阶导数公式。(与二项展开式有相似点)

2025-07-09 14:46:35 515

原创 二、函数 极限 连续

(2)有理函数(多项式比)极限。极限(n→∞,x 为常数 )4.闭区间上连续函数的性质。二、函数 极限 连续。=0时为麦克劳林公式。3.连续性的运算与性质。(1)常用的基本极限。余项为皮亚诺余项,当。

2025-07-09 14:42:33 399

<<项目代码以及数据库>>

项目代码以及数据库

2025-07-14

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除