算法学习09:堆
前言
要记忆的模版:
int h[N], size;//h:堆用数组存储
//将数组 变为 堆
for(int i = n / 2; i; i --) down(i);
void down(int u)
{
int t = u;
//判断 u 是不是比它的左右孩子小。
//先判断是否有左右孩子
if(u * 2 <= size && h[u * 2] < h[t]) t = u * 2;
if(u * 2 + 1 <= size && h[u * 2 + 1] < h[t]) t = u * 2 + 1;
if(u != t)
{
swap(h[u], h[t]);
//递归
down(t);//调整之后看,t是否会影响 堆的结构
}
}
void up(int u)
{
//判断 u的父节点 是不是比u小
//先判断是否存在 父结点
while(u / 2 && h[u / 2] > h[u])
{
swap(h[u / 2], h[u]);
u /= 2;//迭代
}
}
// *****************分割线******************************
// 特别注意:要标记第k个插入的点,所以会有点复杂,自己写交换函数
int h[N], ph[N], hp[N], size;// ph:指向堆, hp: 指向下标
//ph索引:第i个点 hp:堆中的第i个点
//ph[j] = k:第j个插入的点,在堆里面的下标是k
//hp[k] = j:堆里面下标为k的点,对应的ph数组的下标是j
//重点:重写一个交换函数:
void heap_swap(int a, int b)
{
swap(ph[hp[a]], ph[hp[b]]);
swap(hp[a], hp[b]);
swap(h[a], h[b]);
}
void down(int u)
{
int t = u;
//判断 u 是不是比它的左右孩子小。
if(u * 2 <= size && h[u * 2] < h[t]) t = u * 2;
if(u * 2 + 1 <= size && h[u * 2 + 1] < h[t]) t = u * 2 + 1;
if(u != t)
{
heap_swap(u, t);
down(t);//递归
}
}
void up(int u)
{
//判断 u的父节点 是不是比u小
while(u / 2 && h[u / 2] > h[u])
{
heap_swap(u / 2, u);
u /= 2;//迭代
}
}
提示:以下是本篇文章正文内容:
一、例题1:堆排序
堆排序:输入一个长度为n的整数数列,从小到大输出前m小的数。
#include <iostream>
#include <algorithm>
using namespace std;
const int N = le5 + 10;
int n, m;
int h[N], size;//h:堆用数组存储
void down(int u)
{
int t = u;
//判断 u 是不是比它的左右孩子小。
//先判断是否有左右孩子
if(u * 2 <= size && h[u * 2] < h[t]) t = u * 2;
if(u * 2 + 1 <= size && h[u * 2 + 1] < h[t]) t = u * 2 + 1;
if(u != t)
{
swap(h[u], h[t]);
//递归
down(t);//调整之后看,t是否会影响 堆的结构
}
}
void up(int u)
{
//判断 u的父节点 是不是比u小
//先判断是否存在 父结点
while(u / 2 && h[u / 2] > h[u])
{
swap(h[u / 2], h[u]);
u /= 2;//迭代
}
}
int main()
{
scanf("%d%d", &n, &m);
//堆的根节点为1(完全二叉树)
for(int i = 1; i <= n; i ++) scanf("%d", &h[i]);
size = n;
//将数组 变为 堆
for(int i = n / 2; i; i --) down(i);
while(m --)
{
printf("%d", h[1]);
h[1] = h[size];
size --;
down(1);
}
return 0;
}
二、例题2:模拟堆
模拟堆:维护一个集合,初始时,集合为空,支持如下几种操作:
(1)插入一个数x
(2)给出当前集合的最小值
(3)删除当前集合中的最小值(当最小值不唯一时,删除最早插入的最小值)
(4)删除第k个插入的数
(5)修改第k个插入的数
#include <iostream>
#include <algorithm>
#include <string>
using namespace std;
const int N = 1e5 + 10;
int n, m;
int h[N], ph[N], hp[N], size;// ph:指向堆, hp: 指向下标
//ph索引:第i个点 hp:堆中的第i个点
//ph[j] = k:第j个插入的点,在堆里面的下标是k
//hp[k] = j:堆里面下标为k的点,对应的ph数组的下标是j
//重点:重写一个交换函数:
void heap_swap(int a, int b)
{
swap(ph[hp[a]], ph[hp[b]]);
swap(hp[a], hp[b]);
swap(h[a], h[b]);
}
void down(int u)
{
int t = u;
//判断 u 是不是比它的左右孩子小。
if(u * 2 <= size && h[u * 2] < h[t]) t = u * 2;
if(u * 2 + 1 <= size && h[u * 2 + 1] < h[t]) t = u * 2 + 1;
if(u != t)
{
heap_swap(u, t);
down(t);//递归
}
}
void up(int u)
{
//判断 u的父节点 是不是比u小
while(u / 2 && h[u / 2] > h[u])
{
heap_swap(u / 2, u);
u /= 2;//迭代
}
}
int main()
{
int n, m = 0;
scanf("%d", &n);
while(n --)
{
char op[10];
int k, x;
scanf("%s", op);
if(!strcmp(op, "I"))
{
// 插入一个数x
scanf("%d", &x);
size ++;
m ++;
ph[m] = size, hp[size] = m;
h[size] = x;
up(size);
}
else if(!strcmp(op, "PM"))
//给出当前集合的最小值
printf("%d\n", h[1]);
else if(!strcmp(op, "DM"))
{
//删除当前集合中的最小值
heap_swap(1, size);
size --;
down(1);
}
else if(!strcmp(op, "D"))
{
//删除第k个插入的数
scanf("%d", &k);
k = ph[k];
heap_swap(k, size);
size --;
down(k), up(k);//有三种情况,最多执行一个函数
}
else
{
//修改第k个插入的数
scanf("%d", &k);
k = ph[k];
h[k] = x;
down(k), up(k);
}
}
return 0;
}
总结
提示:这里对文章进行总结:
💕💕💕