算法学习09-数据结构04:堆

算法学习09:堆



前言

在这里插入图片描述



要记忆的模版:

int h[N], size;//h:堆用数组存储 
//将数组 变为 堆 
for(int i = n / 2; i; i --) down(i);

void down(int u)
{
	int t = u;
	//判断 u 是不是比它的左右孩子小。
	//先判断是否有左右孩子 
	if(u * 2 <= size && h[u * 2] < h[t]) t = u * 2;
	if(u * 2 + 1 <= size && h[u * 2 + 1] < h[t]) t = u * 2 + 1;
	if(u != t)
	{
		swap(h[u], h[t]);
		//递归 
		down(t);//调整之后看,t是否会影响 堆的结构 
	}
}

void up(int u)
{
	//判断 u的父节点 是不是比u小 
	//先判断是否存在 父结点 
	while(u / 2 && h[u / 2] > h[u])
	{
		swap(h[u / 2], h[u]);
		u /= 2;//迭代 
	}
 } 

// *****************分割线******************************
// 特别注意:要标记第k个插入的点,所以会有点复杂,自己写交换函数

int h[N], ph[N], hp[N], size;// ph:指向堆, hp: 指向下标
//ph索引:第i个点  hp:堆中的第i个点 
//ph[j] = k:第j个插入的点,在堆里面的下标是k
//hp[k] = j:堆里面下标为k的点,对应的ph数组的下标是j 

//重点:重写一个交换函数: 
void heap_swap(int a, int b)
{
	swap(ph[hp[a]], ph[hp[b]]);
	swap(hp[a], hp[b]);
	swap(h[a], h[b]); 
}

void down(int u)
{
	int t = u;
	//判断 u 是不是比它的左右孩子小。
	if(u * 2 <= size && h[u * 2] < h[t]) t = u * 2;
	if(u * 2 + 1 <= size && h[u * 2 + 1] < h[t]) t = u * 2 + 1;
	if(u != t)
	{
		heap_swap(u, t);
		down(t);//递归 
	}
}

void up(int u)
{
	//判断 u的父节点 是不是比u小 
	while(u / 2 && h[u / 2] > h[u])
	{
		heap_swap(u / 2, u);
		u /= 2;//迭代 
	}
 } 

提示:以下是本篇文章正文内容:

一、例题1:堆排序

在这里插入图片描述



堆排序:输入一个长度为n的整数数列,从小到大输出前m小的数。


#include <iostream>
#include <algorithm> 

using namespace std;

const int N = le5 + 10;

int n, m;
int h[N], size;//h:堆用数组存储 

void down(int u)
{
	int t = u;
	//判断 u 是不是比它的左右孩子小。
	//先判断是否有左右孩子 
	if(u * 2 <= size && h[u * 2] < h[t]) t = u * 2;
	if(u * 2 + 1 <= size && h[u * 2 + 1] < h[t]) t = u * 2 + 1;
	if(u != t)
	{
		swap(h[u], h[t]);
		//递归 
		down(t);//调整之后看,t是否会影响 堆的结构 
	}
}

void up(int u)
{
	//判断 u的父节点 是不是比u小 
	//先判断是否存在 父结点 
	while(u / 2 && h[u / 2] > h[u])
	{
		swap(h[u / 2], h[u]);
		u /= 2;//迭代 
	}
 } 

int main()
{
	scanf("%d%d", &n, &m);
	//堆的根节点为1(完全二叉树) 
	for(int i = 1; i <= n; i ++) scanf("%d", &h[i]);
	size = n;
	
	//将数组 变为 堆 
	for(int i = n / 2; i; i --) down(i);
	
	while(m --)
	{
		printf("%d", h[1]);
		h[1] = h[size];
		size --;
		down(1);
	 } 
	return 0;
}


二、例题2:模拟堆

在这里插入图片描述



模拟堆:维护一个集合,初始时,集合为空,支持如下几种操作:
(1)插入一个数x
(2)给出当前集合的最小值
(3)删除当前集合中的最小值(当最小值不唯一时,删除最早插入的最小值)
(4)删除第k个插入的数
(5)修改第k个插入的数


#include <iostream> 
#include <algorithm>
#include <string>

using namespace std;

const int N = 1e5 + 10;

int n, m;
int h[N], ph[N], hp[N], size;// ph:指向堆, hp: 指向下标
//ph索引:第i个点  hp:堆中的第i个点 
//ph[j] = k:第j个插入的点,在堆里面的下标是k
//hp[k] = j:堆里面下标为k的点,对应的ph数组的下标是j 

//重点:重写一个交换函数: 
void heap_swap(int a, int b)
{
	swap(ph[hp[a]], ph[hp[b]]);
	swap(hp[a], hp[b]);
	swap(h[a], h[b]); 
}

void down(int u)
{
	int t = u;
	//判断 u 是不是比它的左右孩子小。
	if(u * 2 <= size && h[u * 2] < h[t]) t = u * 2;
	if(u * 2 + 1 <= size && h[u * 2 + 1] < h[t]) t = u * 2 + 1;
	if(u != t)
	{
		heap_swap(u, t);
		down(t);//递归 
	}
}

void up(int u)
{
	//判断 u的父节点 是不是比u小 
	while(u / 2 && h[u / 2] > h[u])
	{
		heap_swap(u / 2, u);
		u /= 2;//迭代 
	}
 } 

int main()
{
	int n, m = 0;
	scanf("%d", &n);
	while(n --)
	{
		char op[10];
		int k, x;
		
		scanf("%s", op);
		if(!strcmp(op, "I"))
		{
			// 插入一个数x
			scanf("%d", &x);
			size ++;
			m ++;
			ph[m] = size, hp[size] = m;
			h[size] = x;
			up(size);
		}
		else if(!strcmp(op, "PM")) 
		//给出当前集合的最小值
		printf("%d\n", h[1]);
		else if(!strcmp(op, "DM")) 
		{
			//删除当前集合中的最小值
			heap_swap(1, size);
			size --;
			down(1);
		}
		else if(!strcmp(op, "D"))
		{
			//删除第k个插入的数
			scanf("%d", &k);
			k = ph[k];
			heap_swap(k, size);
			size --;
			down(k), up(k);//有三种情况,最多执行一个函数 
		}
		else
		{
			//修改第k个插入的数
			scanf("%d", &k);
			k = ph[k];
			h[k] = x;
			down(k), up(k);
		}
	}
	return 0;
}

总结

提示:这里对文章进行总结:

💕💕💕

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

lennard-lhz

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值