算法学习14:数学知识01(质数,约数,欧拉函数,快速幂)

算法学习14:数论(质数,约数,欧拉函数,快速幂)



前言

数论这个不分涉及到很多**“数学推导”**的部分,自我感觉这部分很难去理解,一些点很乱,须要后面遇到实际问题的时候去优化。

须要达成的目标:了解一些简单的数论知识,有个印象。比如:筛,欧几里得定理,快速幂。


先回忆一下“等差数列 和 等比数列”(递推公式 + 前n项和)

在这里插入图片描述



在这里插入图片描述



要记忆的模版:

// 试除法求约数:
bool is_prime(int n)
{
	if(n < 2) return false;
	for(int i = 2; i <= n / i; i ++)
		if(n % i == 0) return false;
		
	return true; 
 } 

// 分解质因数:
void divide(int n)
{
	for(int i = 2; i <= n / i; i ++)
		if(n % i == 0)
		{
			while(n % i == 0) 	n /= i;
			printf("%d", i);
		}
	if(n > 1) printf("%d", n);					
 } 
 
// 例子:2310 = 2 * 3 * 5 * 7 * 11 
// 24 = 2 * 2 * 2 * 3



提示:以下是本篇文章正文内容:

一、质数

1.质数的判定:试除法


bool is_prime(int n)
{
	if(n < 2) return false;
	for(int i = 2; i <= n / i; i ++)
		if(n % i == 0) return false;
		
	return true; 
 } 


2.质因数的分解:试除法

c++求解质因数,了解什么是质因数



void divide(int n)
{
	for(int i = 2; i <= n / i; i ++)
		if(n % i == 0)
		{
			while(n % i == 0) 	n /= i;
			printf("%d", i);
		}
	if(n > 1) printf("%d", n);					
 } 
 
// 例子:2310 = 2 * 3 * 5 * 7 * 11 
// 24 = 2 * 2 * 2 * 3
 
void divide(int n)
{
	int i = 2;
	do {
		while(n % i==0) {
			cout << i;
			n /= i;
			if(n != 1) cout<<"*";
		}
		i++;
	}
	while(n!=1);
}

// 筛质数:
// 埃氏筛 (对朴素筛的优化) 
 void get_prime(int n)
{
	for(int i = 2; i <= n; i ++)
	{
		if(!st[i]) 
		{
			primes[cnt ++] = i;
			// 标记质数的倍数 
			for(int j = i; j <= n; j += i) st[j] = true;
		}
	
	 } 
 } 

// 线性筛 
 void get_prime(int n)
{
	for(int i = 2; i <= n; i ++)
	{
		if(!st[i]) primes[cnt ++] = i;
		for(in j = 0; primes[j] <= n / j; j ++)
		{
			st[primes[j] * i] = true;
			if(i % primes[j] == 0) break; 
		}
	}
 } 
	

3.筛质数:埃氏筛、线性筛


在这里插入图片描述



// 例题:给定一个n,求出1~n中质数的个数。
int primes[N], cnt;
bool st[N];// false:质数, true:合数 

// primes:存储的是质数,cnt:质数的个数 

// 朴素筛法 
 void get_prime(int n)
{
	for(int i = 2; i <= n; i ++)
	{
		if(!st[i]) primes[cnt ++] = i;
		// 标记倍数 
		for(int j = i; j <= n; j += i) st[j] = true;
	 } 
 } 
 
// 埃氏筛 (对朴素筛的优化) 
 void get_prime(int n)
{
	for(int i = 2; i <= n; i ++)
	{
		if(!st[i]) 
		{
			primes[cnt ++] = i;
			// 标记质数的倍数 
			for(int j = i; j <= n; j += i) st[j] = true;
		}
	
	 } 
 } 

// 线性筛 
 void get_prime(int n)
{
	for(int i = 2; i <= n; i ++)
	{
		if(!st[i]) primes[cnt ++] = i;
		for(in j = 0; primes[j] <= n / j; j ++)
		{
			st[primes[j] * i] = true;
			if(i % primes[j] == 0) break; 
		}
	}
 } 


二、约数

1.试除法求约数

// 给定一个n,求出n的所有约数
vector<int> get_divisors(int n)
{
	for(int i = 1; i <= n / i; i ++)// 遍历 
		if(n % i == 0)
		{
			res.push_back(i);
			// 防止i*i == n ,就是n是i的平方 
			if(i != n / i) res.push_back(n / i);
		}
	sort(res.begin(), res.end());
	return res;
}

2.求约数个数、约数之和(懵懵的)



在这里插入图片描述


在这里插入图片描述



// 给定n个整数,请求出这些数约数的个数,
// 请求出这些数的乘积的约数之和。
// 思考:求一个和求一堆是一样的问题
typedef long long LL;

unorder_map<int, int> primes;
while(n --)
{
	int x;
	cin >> x;
	for(int i = 2; i <= x / i; i ++)
		while(x % i == 0)
		{
			x /= i;
			primes[i] ++;// 哈希表的:key:i,value:++ 
		}
}
LL res = 1;// res为约数的个数 
for(auto prime : primes) 
res = res * (prime.second + 1) % mod;

LL res = 1;// res为约数之和 
for(auto prime : primes)
{
	int p = prime.first, a = prime.second;
	LL t = 1;
	while(a --) t = (t * p + 1) % mod;
	res = res * t % mod;// 遍历完 
 } 

3.辗转相处法求最大公约数(欧几里得定理)

求a和b的最大公约数

#include <iostream>

using namespace std;
 
int gcd(int a, int b)
{
	return b ? gcd(b, a % b) : a;
}

int main()
{
	int n;
	scanf("%d", &n);
	while(n --)
	{
		int a, b;
		scanf("%d%d", &a, &b);
		printf("%d\n", gcd(a, b));
	}
	return 0;
}

在这里插入图片描述



4.扩展欧几里得定理:



在这里插入图片描述



// 给定n对正整数a,b,对于每对数,求出一组x,y,使其满足ax = gcd(a,b);
// 还没理解清楚 
#include <iostream>

using namespace std;

// 传递x,y的引用。 
int exgcd(int a, int b, int &x, int &y)
{
	if(!b)
	{
		x = 1, y = 0;
		return a;
	}
	int d = exgcd(b, a % b, y, x);
	y -= a / b * x;
	return d;// d??? 
}

int main()
{
	int n;
	scanf("%d", &n);
	
	while(n --)
	{
		int a, b, x, y;
		scanf("%d%d", &a, &b);
		
		exgcd(a, b, x, y);
		printf("%d %d", x, y);
	}
	
	return 0;
}


线性同余方程:(和扩展欧几里得定理一样,不太理解,待以后解决)

给定n组数据a,b,m,对于每一组数据,取出一个x,使其满足ax = b(%m)


在这里插入图片描述



在这里插入图片描述



三、欧拉函数:1~n中,与n互质的数的个数叫做欧拉函数



在这里插入图片描述



1.例题1:求一个数n的欧拉函数phi(n)

// 求一个数n的欧拉函数phi(n)
#include <iostream>
#include <algorithm>

using namespace std;

int main()
{
	int n;
	cin >> n;
	
	while(n --)
	{
		int a;
		cin >> a;
		int res = a;
		for(int i = 2; i <= a / i; i ++)
		{
			if(a % i == 0)
			{
				// res = res * (1 - 1 / a);
				res = res / a * (a - 1);// 对除号的变形 
				while(a % i == 0) a /= i;
			}
		}
		if(a > 1) res = res / a * (a - 1);
		
		cout << res << endl; 
	 } 
	return 0;
}

在这里插入图片描述



2.例题2:给定一个正整数n,求1~n中每个数的欧拉函数之和

// 给定一个正整数n,求1~n中每个数的欧拉函数之和
#include <iostream>
#include <algorithm>

using namespace std;

typedef long long LL;

const int N = 1e6 + 10;

int primes[N], cnt;
int phi[N];
bool st[N];

LL get_eulers(int n)
{
	phi[1] = 1;
	for(int i = 2; i <= n; i ++)
	{
		if(!st[i])
		{
			primes[cnt ++] = i;
			phi[i] = i - 1;// 注意1.
		}
		for(int j = 0; primes[j] <= n / i; j ++)
		{
			st[primes[j] * i] = true;
			if(i % primes[j] == 0) 
			{
				phi[primes[j] * i] = phi[i] * primes[j];// 注意2 
				break;
			}
			phi[primes[j] * i] = phi[i] * (primes[j] - 1);// 注意3 
		}
	}
	LL res = 0;
	for(int i = 1; i <= n; i ++) res += phi[i];// 注意4 
	return res; 
}

int main()
{
	int n;
	cin >> n;
	cout << get_eulers(n) << endl;	
	return 0;
}

在这里插入图片描述



四、快速幂

1.例题:给定a,k,p,求出a^k mod p 的值



在这里插入图片描述



#include <iostream>
#include <algorithm>

using namespace std;

typedef long long LL;

// a^k mod p
int qmi(int a, int k, int p)
{
	int res = 1;
	while(k)
	{
		// k的二进制末位为1 
		if(k & 1) res = (LL) res * a % p;
		k >>= 1;
		a = (LL) a * a % p;// a的平方 
	}
	return res;
}

int main()
{
	int n;
	scanf("%d", &n);
	while(n --)
	{
		int a, k, p;
		scanf("%d%d%d", &a, &k, &p);
		
		printf("%d", qmi(a, k, p));
	}
	return 0;
 } 

在这里插入图片描述



2.给定a,p,其中p是质数,求a%p的乘法逆元,不存在则输出impossible



在这里插入图片描述



在这里插入图片描述


总结

提示:这里对文章进行总结:
💕💕💕

  • 19
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

lennard-lhz

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值