题目
在一个大小为 n
且 n
为 偶数 的链表中,对于 0 <= i <= (n / 2) - 1
的 i
,第 i
个节点(下标从 0 开始)的孪生节点为第 (n-1-i)
个节点 。
- 比方说,
n = 4
那么节点0
是节点3
的孪生节点,节点1
是节点2
的孪生节点。这是长度为n = 4
的链表中所有的孪生节点。
孪生和 定义为一个节点和它孪生节点两者值之和。
给你一个长度为偶数的链表的头节点 head
,请你返回链表的 最大孪生和 。
示例 1:
输入:head = [5,4,2,1] 输出:6 解释: 节点 0 和节点 1 分别是节点 3 和 2 的孪生节点。孪生和都为 6 。 链表中没有其他孪生节点。 所以,链表的最大孪生和是 6 。
示例 2:
输入:head = [4,2,2,3] 输出:7 解释: 链表中的孪生节点为: - 节点 0 是节点 3 的孪生节点,孪生和为 4 + 3 = 7 。 - 节点 1 是节点 2 的孪生节点,孪生和为 2 + 2 = 4 。 所以,最大孪生和为 max(7, 4) = 7 。
示例 3:
输入:head = [1,100000] 输出:100001 解释: 链表中只有一对孪生节点,孪生和为 1 + 100000 = 100001 。
提示:
- 链表的节点数目是
[2, 105]
中的 偶数 。 1 <= Node.val <= 105
思路:
题目的要求就是计算关于链表中间对称的两个数(孪生数)的最大和。
我们的思路是通过快慢指针找到链表后半段的初始节点。在遍历的同时,将前半段链表反转,一边遍历,一边反转。最后遍历结束前半段链表反转完成,后半段的初始节点slowpre也找到了,然后前半段的初始节点head和后半段初始节点slowpre就是孪生数,求和!这两个指针再往后遍历求孪生和。
快慢指针:定一个fast和一个slow指针,slow每次移一个节点,fast每次移两个节点,这样当fast到达链表的最后一个节点时(即下一个节点为空节点),slow刚好指到前半段链表的末尾节点。然后slow的下一个节点刚好是后半段链表的初始节点。
class Solution {
public int pairSum(ListNode head) {
// 先反转,再对齐计算
ListNode slow = head;
ListNode fast = head;
ListNode slowPre = null;
while (fast!=null ){
// fast只管走
fast = fast.next.next;
// slow 倒转一下
ListNode slowNext = slow.next;
slow.next = slowPre;
slowPre = slow ;
slow = slowNext;
}
int maxSum = 0;
while ( slowPre != null){
maxSum = Math.max(maxSum, slowPre.val + slow.val);
slowPre = slowPre.next;
slow = slow.next;
}
return maxSum;
}
}