LeetCode 3392、LCR106、3447题解

今天的每日一题比较简单,暴力都只需要很少的代码就能解决,我来说一下我的做题思路吧。

示例

输入:nums = [1,2,1,4,1]

输出:1

解释:

只有子数组 [1,4,1]包含 3 个元素且第一个和第三个数字之和是中间数字的一半。number.

首先根据题目我们能知道子数组的长度为3,也就是滑动窗口,窗口的大小为3,所以我们设置l为0,向右移动,而r则等于l+2,那么中间的值的下标便为l+1。现在我们知道了子数组的滑动可以通过一次遍历完成,我们现在就要去记录完成条件的子数组的数量了,首先我们知道这是一个整数数组,所以当我们的nums[l+1]为1、3、5、7这些奇数的时候,除以2一定无法等于nums[l]+nums[l+2],所以我们只需要限制两个条件即可对数量进行++

代码如下

class Solution {
    public int countSubarrays(int[] nums) {
        int n = nums.length;
        int ans = 0;
        for(int l=0,r=2;r<n;l++,r++){
            if(nums[l]+nums[r]==nums[l+1]/2&&nums[l+1]%2==0) ans++;
        }
        return ans;
    }
}

判断是否为二分图最基本的做法就是染色+bfs,以下举几个基本的示例:

graph = [
  [1,3],   // 0号节点连着1、3
  [0,2],   // 1号节点连着0、2
  [1,3],   // 2号节点连着1、3
  [0,2]    // 3号节点连着0、2
]
0 --- 1
|     |
3 --- 2

思路很简单,就是通过定义颜色然后bfs检索判断所有的组是否存在相交,如果相交了就说明组内有交集无法得到二分图,返回false

先定义一个数组和栈,数组用来标记点是否已经访问过了,且其颜色用来区别组,而栈则是用来遍历节点用的,访问节点,推出节点,新增节点,而颜色的定义我们通过1代表红色,-1代表蓝色,0代表没有访问来进行区分

拿上述示例举个例子,当graph数组为示例所示,我们先将n个节点通过Arrays.fill(color,0)将节点的颜色都进行初始化一遍。

重点:对于样例可能存在多个连通分量

graph = [
  [1],     // 0连着1
  [0],     // 1连着0
  [3],     // 2连着3
  [2],     // 3连着2
  [],      // 4孤立节点
  [6],     // 5连着6
  [5]      // 6连着5
]

画出来大概是这样的

0 - 1       2 - 3      4       5 - 6

所以我们需要一个for循环去遍历,防止漏掉通过栈获取到的节点,当进入连通分量的for循环后再进栈queue.offer(i),并给i初始化一个颜色,我就使用红色了,然后再在while(!=queue.isEmpty())中实行出栈进栈的操作,防止当前连通分量的节点没有全部遍历染色完,而染色也有相应的规则,找到对应的相同组中出现了连接,那么二分图就不成立了。

规则如下:
如果对应节点的graph数组中的节点没有染色(即为0),则染色成相反的颜色(即-color[ans],ans是queue.poll()后得到)
如果对应节点的graph数组中的节点和当前节点的颜色出现相同的情况,即视为不是二分图(出现了内连接)。

class Solution {
    public boolean isBipartite(int[][] graph) {
        int n = graph.length;
        int[] color = new int[n];
        Arrays.fill(color,0);//初始化
        //0未访问 1为红色 -1为蓝色
        Queue<Integer> queue = new LinkedList<>();
        //可能存在多个连通分量
        for(int i=0;i<n;i++){
            if(color[i]!=0) continue;
            //初始化红色
            queue.offer(i);
            color[i] = 1;
            while(!queue.isEmpty()){
                int ans = queue.poll();
                for(int num:graph[ans]){
                    if(color[num]==color[ans]) return false;
                    if(color[num]==0){
                        color[num] = -color[ans];
                        queue.offer(num);
                    }
                }
            }
        }
        return true;
    }
}

这题我的思路比较简单,也是铁铁的超时了。用map去掉elements中重复的元素并记录下其最小的下标,然后通过o(n*n)的时间复杂度进行遍历,遍历到的返回下标并加入到list中,没有遍历到的就在list中加入-1。

class Solution {
    public int[] assignElements(int[] groups, int[] elements) {
        int n = groups.length;
        int m = elements.length;
        HashMap<Integer,Integer> map = new HashMap<>();
        map.put(0,elements[0]);//初始化
        for(int i=1;i<m;i++){
            if(map.getOrDefault(i,0)==0&&elements[i]!=elements[0]) map.put(i,elements[i]);
            // System.out.println(map.getOrDefault(elements[i],0));
        }
        List<Integer> loser = new ArrayList<>();
        for(int i=0;i<n;i++){
            boolean found = false;
            for(Map.Entry<Integer, Integer> entry : map.entrySet()){
                // System.out.println("Key = " + entry.getKey() + ", Value = " + entry.getValue());
                if(groups[i]%entry.getValue()==0) {
                    loser.add(entry.getKey());
                    found = true;
                    break;
                }
            }
            if (!found) { // 如果内层循环结束后标志变量为 false,说明没有找到满足条件的元素
                loser.add(-1);
            }
        }
        return loser.stream().mapToInt(Integer::intValue).toArray();
    }
}

想要优化却无从下手的无力感,气死我啦,只能委屈的再去看题解并理解答者的做题方法。

看了下题解后终于是理解了双elements的优化应该是怎么来的了,这题我们需要逆向思维,且遍历一遍groups确立最大的边界值mx,然后再遍历elements数组(找到最小下标的整余数,并打上了标记防止二次更新相同位置的下标)
举个例子就能明白
比如示例groups = [8,4,3,2,4], elements = [4,2]
我们遍历elements数组当i=0时,对于4、8这两个值的对应的最小下标为0,而当i=1时,对于2这个值的对应最小下标为1,且由于之前已经使得4、8两个已经有了对应的值,那么就不会再去更新,这也是为什么我们要一开始使用Arrays.fill(target,-1)的原因

class Solution {
    public int[] assignElements(int[] groups, int[] elements) {
        int mx = 0;
        for (int x : groups) {
            mx = Math.max(mx, x);
        }
        int[] target = new int[mx + 1];
        Arrays.fill(target, -1);

        for (int i = 0; i < elements.length; i++) {
            int x = elements[i];
            if (x > mx || target[x] >= 0) { // x 及其倍数一定已被标记,跳过
                continue;
            }
            for (int y = x; y <= mx; y += x) { // 枚举 x 的倍数 y
                if (target[y] < 0) { // 没有标记过
                    target[y] = i; // 标记 y 可以被 x 整除(记录 x 的下标)
                }
            }
        }

        // 回答询问
        for (int i = 0; i < groups.length; i++) {
            groups[i] = target[groups[i]]; // 原地修改
        }
        return groups;
    }
}

之后我们只需要遍历并且更新groups数组即可。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值