算法-归并排序-788. 逆序对的数量

题目

给定一个长度为 n 的整数数列,请你计算数列中的逆序对的数量。

逆序对的定义如下:对于数列的第 i 个和第 j个元素,如果满足 i<j且 a[i]>a[j],则其为一个逆序对;否则不是。

输入格式

第一行包含整数 n,表示数列的长度。

第二行包含 n个整数,表示整个数列。

输出格式

输出一个整数,表示逆序对的个数。

数据范围

1≤n≤100000,
数列中的元素的取值范围 [1,10的9次方]。

输入样例:
6
2 3 4 5 6 1
输出样例:
5

思路

  1. 采用分治的一个思路:引入归并排序的基本流程:
    1. [L,R]=>>[L,mid],[mid+1,R]
    2. 递归排序[L,mid]和[mid+1,R]
    3. 归并,将左右两个有序序列合并成一个有序序列
  2. 将所有的逆序对分成三大类:两个数同时出现在左半边;两个数同时出现在右半边;一个数出现在左半边,一个数出现在右半边==》假定归并排序的同时可以计算出逆序对的个数
    1. 两个数都在左半边的情况:merge_sort(L,mid)
    2. 两个数都在右半边的情况:merge_sort(mid+1,R)
    3. 一个数在左半边,一个数在右半边:计算出右边每一个数对应的逆序对的个数:s1,s2,s3...sm,相加即可;在归并排序的归并中,双指针进行归并,一个指在左半边,一个指在右半边,所以sj=mid-i+1;
  3. 本题的数据逆序对个数最多的情况是:整个排列是逆序的时候:有(n-1)+(n-2)+...+1,用c++会超过int的范围
  4. 本题的编外题:xmuoj | 正确排名总数

代码

Python代码

# 读入数据
n=int(input())
q=list(map(int,input().split()))
res =0
tmp=[0]*(n+5)
# 归并排序求得逆序对数量
def merge_sort(l,r):
    # 递归出口
    if l>=r:
        return 0
    mid=(l+r)//2
    # 两个数都在左半边或者都在右半边的数量
    res = merge_sort(l,mid)+merge_sort(mid+1,r)
    i=l
    j=mid+1
    k=0
    # 处理一个数在左半边,一个数在右半边的情况
    while i<=mid and j<=r:
        if q[i]<=q[j]:
            tmp[k]=q[i]
            k+=1
            i+=1
        else :
            tmp[k]=q[j]
            k+=1
            j+=1
            res+=mid-i+1 # 右半边对应的每一个数存在的逆序对数量
    # 扫尾工作
    while i<=mid:
        tmp[k]=q[i]
        k+=1
        i+=1
    while j<=r:
        tmp[k]=q[j]
        k+=1
        j+=1
    p=0
    # 物归原主
    for i in range(l,r+1):
        q[i]=tmp[p]
        p+=1
    return res
print(merge_sort(0,n-1))
    

C++代码

#include<iostream>
using namespace std;
typedef long long LL;//注意返回的数据可能会超过INT 的数值范围
const int N=1e6+10;
int n;
int q[N],tmp[N];
LL merge_sort(int l,int r){
	if(l>=r)return 0;
	int mid=l+r>>1;//右移一位,相当于取中间值
	LL res=merge_sort(l,mid)+merge_sort(mid+1,r);
	//归并过程
	int k=0,i=l,j=mid+1;
	while(i<=mid&&j<=r)
		if(q[i]<=q[j])tmp[k++]=q[i++];//如果是q[i]<q[j],那么排序就不稳定
	    else {
			tmp[k++]=q[j++];
			res+= mid-i+1;
		}
	//扫尾
	while(i<=mid)tmp[k++]=q[i++];
	while(j<=r)tmp[k++]=q[j++];
	//物归原主
	for(int i=l,j=0;i<=r;i++,j++)q[i]=tmp[j];
	
	return res;
}

int main(){
	cin>>n;
	for(int i=0;i<n;i++)scanf("%d",&q[i]);
	cout<<merge_sort(0,n-1)<<endl;
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值