题目
给定一个长度为 n 的整数数列,请你计算数列中的逆序对的数量。
逆序对的定义如下:对于数列的第 i 个和第 j个元素,如果满足 i<j且 a[i]>a[j],则其为一个逆序对;否则不是。
输入格式
第一行包含整数 n,表示数列的长度。
第二行包含 n个整数,表示整个数列。
输出格式
输出一个整数,表示逆序对的个数。
数据范围
1≤n≤100000,
数列中的元素的取值范围 [1,10的9次方]。
输入样例:
6
2 3 4 5 6 1
输出样例:
5
思路
- 采用分治的一个思路:引入归并排序的基本流程:
- [L,R]=>>[L,mid],[mid+1,R]
- 递归排序[L,mid]和[mid+1,R]
- 归并,将左右两个有序序列合并成一个有序序列
- 将所有的逆序对分成三大类:两个数同时出现在左半边;两个数同时出现在右半边;一个数出现在左半边,一个数出现在右半边==》假定归并排序的同时可以计算出逆序对的个数
- 两个数都在左半边的情况:merge_sort(L,mid)
- 两个数都在右半边的情况:merge_sort(mid+1,R)
- 一个数在左半边,一个数在右半边:计算出右边每一个数对应的逆序对的个数:s1,s2,s3...sm,相加即可;在归并排序的归并中,双指针进行归并,一个指在左半边,一个指在右半边,所以sj=mid-i+1;
- 本题的数据逆序对个数最多的情况是:整个排列是逆序的时候:有(n-1)+(n-2)+...+1,用c++会超过int的范围
- 本题的编外题:xmuoj | 正确排名总数
代码
Python代码
# 读入数据
n=int(input())
q=list(map(int,input().split()))
res =0
tmp=[0]*(n+5)
# 归并排序求得逆序对数量
def merge_sort(l,r):
# 递归出口
if l>=r:
return 0
mid=(l+r)//2
# 两个数都在左半边或者都在右半边的数量
res = merge_sort(l,mid)+merge_sort(mid+1,r)
i=l
j=mid+1
k=0
# 处理一个数在左半边,一个数在右半边的情况
while i<=mid and j<=r:
if q[i]<=q[j]:
tmp[k]=q[i]
k+=1
i+=1
else :
tmp[k]=q[j]
k+=1
j+=1
res+=mid-i+1 # 右半边对应的每一个数存在的逆序对数量
# 扫尾工作
while i<=mid:
tmp[k]=q[i]
k+=1
i+=1
while j<=r:
tmp[k]=q[j]
k+=1
j+=1
p=0
# 物归原主
for i in range(l,r+1):
q[i]=tmp[p]
p+=1
return res
print(merge_sort(0,n-1))
C++代码
#include<iostream>
using namespace std;
typedef long long LL;//注意返回的数据可能会超过INT 的数值范围
const int N=1e6+10;
int n;
int q[N],tmp[N];
LL merge_sort(int l,int r){
if(l>=r)return 0;
int mid=l+r>>1;//右移一位,相当于取中间值
LL res=merge_sort(l,mid)+merge_sort(mid+1,r);
//归并过程
int k=0,i=l,j=mid+1;
while(i<=mid&&j<=r)
if(q[i]<=q[j])tmp[k++]=q[i++];//如果是q[i]<q[j],那么排序就不稳定
else {
tmp[k++]=q[j++];
res+= mid-i+1;
}
//扫尾
while(i<=mid)tmp[k++]=q[i++];
while(j<=r)tmp[k++]=q[j++];
//物归原主
for(int i=l,j=0;i<=r;i++,j++)q[i]=tmp[j];
return res;
}
int main(){
cin>>n;
for(int i=0;i<n;i++)scanf("%d",&q[i]);
cout<<merge_sort(0,n-1)<<endl;
return 0;
}