一、快速排序
1.问题分析
快速排序是比较快的排序方法。它的基本思想是通过一组排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据小,然后再按此方法对这两部分数据进行快速排序,整个排序过程可以递归进行,以此使所有数据变成有序序列。
2.算法设计
(1)分解:
先从数列中取出一个元素作为基准元素。一基准元素为标准,将问题分解为两个子序列,使小于或者等于基准元素的子序列在左侧,使大于基准元素的子序列在右侧。
(2)治理 :
对两个子序列进行快速排序(递归快速排序)。
(3)合并:
将排好的两个子序列合并在一起,得到原问题的解。
(4)基准元素的选取:
①:取第一个元素。(通常选取第一个元素)
②:取最后一个元素
③:取中间位置的元素
④:取第一个、最后一个、中间位置元素三者之中位数
⑤:取第一个和最后一个之间位置的随机数 k (low<=k<=hight)
3.算法分析
假设当前的待排序的序列为 R[low,hight] , 其中 low<=hight。同时选取首元素为基准元素。
步骤一:选取首元素的第一个元素作为基准元素 pivot=R[low] ,i=low ,j=hight。
步骤二:从右向左扫描,找到小于等于 pivot 的数,如果找到,R[i] 和 R[j] 交换 ,i++。
步骤三:从左向右扫描,找到大于 pivot 的数,如果找到,R[i] 和 R[j] 交换,j--。
步骤四:重复 步骤二~步骤三,直到 j 与 i 的指针重合 返回位置 mid=i ,该位置的数正好是 pivot 元素。
至此换成一趟排序,此时以 mid 为界线,将数据分割为两个子序列,左侧子序列都比 pivot 数小,右侧子序列都比 pivot 数大,然后再分别对这两个子序列进行快速排序。
代码如下:
#include<iostream>
using namespace std;
void quicksort(int x[],int l,int r)
{
if(l>=r) return;
int temp=x[l],i=l-1,j=r+1;
while(i<j){
do i++;while(x[i]<temp);
do j--;while(x[j]>temp);
if(i<j) swap(x[i],x[j]);
}
quicksort(x,l,j);
quicksort(x,j+1,r);
}
int main()
{
int n,i,a[100000];
scanf("%d",&n);
for(i=0;i<n;i++){
scanf("%d",&a[i]);
}
quicksort(a,0,n-1);
for(i=0;i<n;i++){
printf("%d\n",a[i]);
}
return 0;
}
二、归并排序
1.归并排序(Merge Sort)是建立在归并操作上的一种既有效又稳定的排序算法,该算法是采用
分治法(Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的
序列。即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二
路归并。
2.基本算法
1、分离
将已有数列不断分离成两段长度基本相同(当已有数列长度是奇数时,则一半长一半短),直到分离成长度为 1 的 n 个数列(其实就是 n 个数)。
2、合并
将数列两两合并,每次合并时进行比较和排序,直到完成排序。
3、图片讲解
将一个无序数列排好序:
先是分离成长度为 1 的 n 个数列,然后再合并,合并过程中两个红色区域代表两两比较,然后将小的放在前面。
代码如下:
#include<iostream>
using namespace std;
int temp[100000];
void mergesort(int q[],int l,int r)
{
if(l>=r) return;
int mid=(l+r)/2;
mergesort(q,l,mid);
mergesort(q,mid+1,r);
int k=0,i=l,j=mid+1;
while(i<=mid&&j<=r){
if(q[i]<=q[j]) temp[k++]=q[i++];
else temp[k++]=q[j++];
}
while(i<=mid) temp[k++]=q[i++];
while(j<=r) temp[k++]=q[j++];
for(i=l,j=0;i<=r;i++,j++){
q[i]=temp[j];
}
}
int main()
{
int n,i,a[100000];
scanf("%d",&n);
for(i=0;i<n;i++){
scanf("%d",&a[i]);
}
mergesort(a,0,n-1);
for(i=0;i<n;i++){
printf("%d\n",a[i]);
}
return 0;
}