1.集合:讲解了定义、关系
关系:交、并、差等关系
- 常见集合:
- 自然数- N
- 整数 - Z
- 有理数 - Q
- 实数 - R
- 复数 - C
2.讲解特殊的区间-(实数集区间-完备性)
上界与下届
等势:集合A到集合B存在双射,称AyuB等势,记为A~~B。称与自然数集N等势的集合为可列集。
AN
NQ
(0,1)R
(康托定理)NR
3.常用不等式:
- 三角不等式
- 伯努利不等式
- 算数-几何平均值不等式
4.映射:
- 单射(嵌入映射)原像与像
- 满射(到上映射)
- 双射(一一映射)
5.函数:
定义:
- 常值函数 y = c
- 提到了有关六边形的关系推导相应的三角函数的关系
- 四则运算
- 复合运算
- 反函数
- 如果 f 是双射,那么f 可逆,记为f*-1
- 符号函数
- 高斯函数 y = [x]
- 烈克雷函数
- 黎曼函数
函数的性质:
- 有界性
- 单调性: 单调递增/递减
- 周期性:
- 奇偶性: 偶函数对于是X对称,奇函数则是对于Y轴对称