题目详情
题目链接
给定一个由 0 和 1 组成的矩阵 mat ,请输出一个大小相同的矩阵,其中每一个格子是 mat 中对应位置元素到最近的 0 的距离。
两个相邻元素间的距离为 1 。
示例 1:
输入:mat = [[0,0,0],[0,1,0],[0,0,0]]
输出:[[0,0,0],[0,1,0],[0,0,0]]
示例 2:
输入:mat = [[0,0,0],[0,1,0],[1,1,1]]
输出:[[0,0,0],[0,1,0],[1,2,1]]
提示:
m == mat.length
n == mat[i].length
1 <= m, n <= 104
1 <= m * n <= 104
mat[i][j] is either 0 or 1.
mat 中至少有一个 0
算法原理
这个问题我们可以通过多源广度优先搜索(Multi-source BFS)来解决。将多个源点看成一个“超级源点”,同时向终点扩展。
注意 对于这个题来说,如果我们将1看作起点,0看作终点,BFS完成后要想将结果记录下来,还要回退到1上。此时,我们可以利用“正难则反”的思想,将0看作起点,1看作终点,这样我们记录结果就很方便。
步骤:
- 把所有的0加入队列中
- 一层一层向外扩展
编写代码
class Solution {
int[] dx = {0, 0, 1, -1};
int[] dy = {1, -1, 0, 0};
public int[][] updateMatrix(int[][] mat) {
int m = mat.length, n = mat[0].length;
int[][] dist = new int[m][n];
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
dist[i][j] = -1; // 该位置没有被访问过
}
}
Queue<int[]> q = new LinkedList<>();
// 1. 把所有的0加入队列中
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
if (mat[i][j] == 0) {
dist[i][j] = 0;
q.add(new int[]{i, j});
}
}
}
// 2. 一层一层往外扩展
while (!q.isEmpty()) {
int[] t = q.poll();
int a = t[0], b = t[1];
// 检查上下左右四个方向
for (int i = 0; i < 4; i++) {
int x = a + dx[i], y = b + dy[i];
if (x >= 0 && x < m && y >= 0 && y < n && dist[x][y] == -1) {
dist[x][y] = dist[a][b] + 1;
q.add(new int[]{x, y});
}
}
}
return dist;
}
}