[三分钟学算法]多源BFS-多源最短路径-01矩阵:给定一个由 0 和 1 组成的矩阵 mat ,请输出一个大小相同的矩阵,其中每一个格子是 mat 中对应位置元素到最近的 0 的距离。

题目详情

题目链接
给定一个由 0 和 1 组成的矩阵 mat ,请输出一个大小相同的矩阵,其中每一个格子是 mat 中对应位置元素到最近的 0 的距离。

两个相邻元素间的距离为 1 。

示例 1:
在这里插入图片描述

输入:mat = [[0,0,0],[0,1,0],[0,0,0]]
输出:[[0,0,0],[0,1,0],[0,0,0]]

示例 2:

在这里插入图片描述

输入:mat = [[0,0,0],[0,1,0],[1,1,1]]
输出:[[0,0,0],[0,1,0],[1,2,1]]

提示:

m == mat.length
n == mat[i].length
1 <= m, n <= 104
1 <= m * n <= 104
mat[i][j] is either 0 or 1.
mat 中至少有一个 0

算法原理

这个问题我们可以通过多源广度优先搜索(Multi-source BFS)来解决。将多个源点看成一个“超级源点”,同时向终点扩展。

注意 对于这个题来说,如果我们将1看作起点,0看作终点,BFS完成后要想将结果记录下来,还要回退到1上。此时,我们可以利用“正难则反”的思想,将0看作起点,1看作终点,这样我们记录结果就很方便。

步骤:

  1. 把所有的0加入队列中
  2. 一层一层向外扩展
    在这里插入图片描述

编写代码

class Solution {
    int[] dx = {0, 0, 1, -1};
    int[] dy = {1, -1, 0, 0};

    public int[][] updateMatrix(int[][] mat) {
        int m = mat.length, n = mat[0].length;
        int[][] dist = new int[m][n];
        for (int i = 0; i < m; i++) {
            for (int j = 0; j < n; j++) {
                dist[i][j] = -1; // 该位置没有被访问过
            }
        }
        Queue<int[]> q = new LinkedList<>();

        // 1. 把所有的0加入队列中
        for (int i = 0; i < m; i++) {
            for (int j = 0; j < n; j++) {
                if (mat[i][j] == 0) {
                    dist[i][j] = 0;
                    q.add(new int[]{i, j});
                }
            }
        }      

        // 2. 一层一层往外扩展
        while (!q.isEmpty()) {
            int[] t = q.poll();
            int a = t[0], b = t[1];

            // 检查上下左右四个方向
            for (int i = 0; i < 4; i++) {
                int x = a + dx[i], y = b + dy[i];

                if (x >= 0 && x < m && y >= 0 && y < n && dist[x][y] == -1) {
                    dist[x][y] = dist[a][b] + 1;
                    q.add(new int[]{x, y});
                }
            }
        }
        return dist;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Ctrl С

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值