组合优化:背包问题

背包问题(Knapsack Problem)是组合优化中的一个经典问题,它描述的是这样一个场景:有一个背包,背包的承重有限,同时有一系列物品,每个物品都有自己的重量和价值。问题的目标是选择一些物品,使得这些物品的总重量不超过背包的承重,同时这些物品的总价值尽可能高。

特点:

1.组合优化:背包问题属于组合优化问题,它要求在有限的条件下选择最优的组合。

2.决策过程:问题的解决过程涉及到一系列的决策,即选择哪些物品放入背包。

3.重叠子问题:背包问题具有重叠子问题的特性,即在解决大问题的过程中会反复遇到相同的小问题。

4.最优子结构:背包问题具有最优子结构的特性,即问题的最优解包含其子问题的最优解。

常见用法:

1.资源分配:在资源有限的情况下,如何分配资源以最大化效益。

2.装载问题:如何装载货物以最大化运输效率。

3.时间管理:如何安排任务以最大化完成的工作量。

4.金融投资:如何分配投资以最大化收益。

经典C语言例题:

题目:使用动态规划解决0/1背包问题。

示例代码

#include <stdio.h>
#include <stdlib.h>
#include <malloc.h>
#include <string.h>
// 定义背包问题的结构体
typedef struct {
    int capacity; // 背包容量
    int* weights; // 物品重量数组
    int* values; // 物品价值数组
    int n; // 物品种类数
} Knapsack;

// 创建背包问题实例
Knapsack* createKnapsack(int capacity, int* weights, int* values, int n) {
     Knapsack* knapsack = (Knapsack*)malloc(sizeof(Knapsack));
     knapsack->capacity = capacity;
     knapsack->weights = weights;
     knapsack->values = values;
     knapsack->n = n;
     return knapsack;
}

// 计算最大价值
int knapsack_(Knapsack* knapsack) {
     int** dp = (int**)malloc((knapsack->n + 1) * sizeof(int*));
     for (int i = 0; i <= knapsack->n; i++) {
          dp[i] = (int*)malloc((knapsack->capacity + 1) * sizeof(int));
          memset(dp[i], 0, (knapsack->capacity + 1) * sizeof(int));
     }
     for (int i = 1; i <= knapsack->n; i++) {
          for (int w = 1; w <= knapsack->capacity; w++) {
               if (knapsack->weights[i - 1] <= w) {
                    dp[i][w] = (dp[i - 1][w] > dp[i - 1][w - knapsack->weights[i - 1]] + knapsack->values[i - 1]) ? dp[i - 1][w] : dp[i - 1][w - knapsack->weights[i - 1]] + knapsack->values[i - 1];
               } else {
                    dp[i][w] = dp[i - 1][w];
               }
          }
     }
     int maxValue = dp[knapsack->n][knapsack->capacity];
     for (int i = 0; i <= knapsack->n; i++) {
          free(dp[i]);
     }
     free(dp);
     return maxValue;
}

// 计算最大值
int max(int a, int b) {
     return (a > b) ? a : b;
}

int main() {
     int capacity = 50;
     int weights[] = {10, 20, 30};
     int values[] = {60, 100, 120};
     int n = sizeof(weights) / sizeof(weights[0]);
     Knapsack* knapsack = createKnapsack(capacity, weights, values, n);
     printf("Maximum value in knapsack: %d\n", knapsack_(knapsack));
     free(knapsack->weights);
     free(knapsack->values);
     free(knapsack);
     return 0;
}

例题分析:

1.创建背包问题实例createKnapsack函数创建一个背包问题实例,包括背包容量、物品重量数组、物品价值数组和物品种类数。

2.计算最大价值knapsack函数使用动态规划方法计算背包问题的最大价值。它首先创建一个二维数组dp来存储子问题的解,然后通过两层循环遍历所有物品和所有可能的重量,计算每个子问题的解,并更新dp数组。

3.主函数:在main函数中,定义了一个背包问题实例,并调用knapsack函数计算最大价值,最后打印结果。

这个例题展示了如何在C语言中使用动态规划解决0/1背包问题。通过这个例子,可以更好地理解动态规划在解决背包问题中的应用,以及如何使用动态规划来高效地解决问题。动态规划通过存储子问题的解来避免重复计算,从而提高了算法的效率。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值