儿童节那天有 K 位小朋友到小明家做客。
小明拿出了珍藏的巧克力招待小朋友们。
小明一共有 N 块巧克力,其中第 i 块是 Hi×Wi 的方格组成的长方形。
为了公平起见,小明需要从这 N 块巧克力中切出 K 块巧克力分给小朋友们。
切出的巧克力需要满足:
形状是正方形,边长是整数
大小相同
例如一块 6×5 的巧克力可以切出 6 块 2×2 的巧克力或者 2 块 3×3 的巧克力。
当然小朋友们都希望得到的巧克力尽可能大,你能帮小明计算出最大的边长是多少么?
输入格式
第一行包含两个整数 N 和 K。
以下 N 行每行包含两个整数 Hi 和 Wi。
输入保证每位小朋友至少能获得一块 1×1 的巧克力。
输出格式
输出切出的正方形巧克力最大可能的边长。
数据范围
1≤N,K≤105,
1≤Hi,Wi≤105
输入样例:
2 10
6 5
5 6
输出样例:
2
题目分析:由题意可以推断出,当需要分出的巧克力的长度越大,则能分出的k越小,成一个单调递减的趋势,因此是可以用二分的思想来做的
被分出来的长度与块数公式如上,(巧克力长/切出正方形的边长)✖(巧克力宽/切出巧克力的边长)即等于被切出来的巧克力快速,注意都要向下取整,用二分找到满足切出正方形长度最大的右边界
代码实现:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=100010;
int h[N],w[N];//分别给巧克力的长宽定义一个数组
int n,k;
bool check(int mid)
{
int res=0;
for(int i=0;i<n;i++)
{
res+=(h[i]/mid)*(w[i]/mid);//向下取整,记得加括号
if(res>=k) return true;//如果已经可以分到k块既以上直接退出放回true
}
return false;
}
int main()
{
scanf("%d%d",&n,&k);
for(int i=0;i<n;i++) scanf("%d%d",&h[i],&w[i]);
int l=0,r=1e5;
while(l<r)
{
int mid=l+r+1>>1;
if(check(mid)) l=mid;
else r=mid-1;
}
printf("%d\n",l);
return 0;
}