分巧克力(二分)

文章描述了一个编程挑战,其中小明需要将长方形的巧克力均匀地切分成正方形分给小朋友。问题转化为寻找最大边长的正方形,使得能切出至少K块。解决方案是使用二分搜索算法,通过检查不同边长能否切出足够数量的正方形来找到最大值。
摘要由CSDN通过智能技术生成

儿童节那天有 K 位小朋友到小明家做客。

小明拿出了珍藏的巧克力招待小朋友们。

小明一共有 N 块巧克力,其中第 i 块是 Hi×Wi 的方格组成的长方形。

为了公平起见,小明需要从这 N 块巧克力中切出 K 块巧克力分给小朋友们。

切出的巧克力需要满足:

  1. 形状是正方形,边长是整数

  1. 大小相同

例如一块 6×5 的巧克力可以切出 6 块 2×2 的巧克力或者 2 块 3×3 的巧克力。

当然小朋友们都希望得到的巧克力尽可能大,你能帮小明计算出最大的边长是多少么?

输入格式

第一行包含两个整数 N 和 K。

以下 N 行每行包含两个整数 Hi 和 Wi。

输入保证每位小朋友至少能获得一块 1×1 的巧克力。

输出格式

输出切出的正方形巧克力最大可能的边长。

数据范围

1≤N,K≤105,

1≤Hi,Wi≤105

输入样例:
2 10
6 5
5 6
输出样例:
2

题目分析:由题意可以推断出,当需要分出的巧克力的长度越大,则能分出的k越小,成一个单调递减的趋势,因此是可以用二分的思想来做的

被分出来的长度与块数公式如上,(巧克力长/切出正方形的边长)✖(巧克力宽/切出巧克力的边长)即等于被切出来的巧克力快速,注意都要向下取整,用二分找到满足切出正方形长度最大的右边界

代码实现:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=100010;
int h[N],w[N];//分别给巧克力的长宽定义一个数组
int n,k;

bool check(int mid)
{
    int res=0;
    for(int i=0;i<n;i++)
    {
        res+=(h[i]/mid)*(w[i]/mid);//向下取整,记得加括号
        if(res>=k) return true;//如果已经可以分到k块既以上直接退出放回true
    }
    return false;
}

int main()
{
    scanf("%d%d",&n,&k);
    for(int i=0;i<n;i++) scanf("%d%d",&h[i],&w[i]);
    
    int l=0,r=1e5;
    while(l<r)
    {
        int mid=l+r+1>>1;
        if(check(mid)) l=mid;
        else r=mid-1;
    }
    printf("%d\n",l);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值