不多说,直接放题目
给定一个长度为 N 的数列,A1,A2,…AN,如果其中一段连续的子序列 Ai,Ai+1,…Aj 之和是 K 的倍数,我们就称这个区间 [i,j] 是 K 倍区间。
你能求出数列中总共有多少个 K 倍区间吗?
输入格式
第一行包含两个整数 N 和 K。
以下 N 行每行包含一个整数 Ai。
输出格式
输出一个整数,代表 KK 倍区间的数目。
数据范围
1≤N,K≤100000,
1≤Ai≤100000
输入样例:
5 2
1
2
3
4
5
输出样例:
6
分析:
求区间[l,r]的和是k的倍数的个数。求区间和,我们可以通过前缀和来求出。我们规定sum[i]表示第1个元素到第i个元素的和。那么sum[r] - sum[l-1]就是区间[l,r]的和。区间[l,r]的和是k的倍数即(sum[r] - sum[l-1])%k == 0 即sum[r]%k == sum[l-1]%k
文字难以理解,直接上图
让我们看看代码吧
代码:(时间复杂度O(n))
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N=100010;
int n,k;
ll sum[N];//前缀和数组
ll cnt[N];//建立一个数组用来存储每一个余数的个数
int main()
{
scanf("%d%d",&n,&k);
//把数组变成前缀和数组
for(int i=1;i<=n;i++)
{
scanf("%lld",&st[i]);
sum[i]+=sum[i-1];
}
ll res=0;//res有可能比2的九次方大,超过int的范围,因此用longlong
cnt[0]=1;//这里由于st[0]==0,因此取模已经有了一个
for(int i=1;i<=n;i++)
{
res+=cnt[sum[i]%k];
cnt[sum[i]%k]++;
}
printf("%lld\n",res);
return 0;
}
好了,代码就是如此,这里最难理解的就是第25行行代码和第26行代码
解释下 ans+=res[sum[i]%k];
首先明确 res[sum[i]%k] 表示的是sum[i]前缀和取余后出现过的次数。
举个例子,假设 sum[i]%k = 3,在后边的循环中,又出现了一个 sum[i]%k = 3,那么此时,这个“3”可以和前边出现过的所有的“3”分别构成一个K倍区间,前边的“3”一共出现过res[sum[i]%k] 次,所以 此时又新增了res[sum[i]%k]个K倍区间。
所以是res先+,后cnt再++