子串简写(蓝桥杯)(双指针)

目录

子串简写

盛最多水的容器

 最长连续不重复子序列

 数组元素的目标和

子串简写

程序猿圈子里正在流行一种很新的简写方法:对于一个字符串,只保留首尾字符,将首尾字符之间的所有字符用这部分的长度代替。例如 internation-alization 简写成 i18n,Kubernetes (注意连字符不是字符串的一部分)简写成 K8s, Lanqiao 简写成 L5o 等。

在本题中,我们规定长度大于等于 K 的字符串都可以采用这种简写方法(长度小于 K 的字符串不配使用这种简写)。

给定一个字符串 S 和两个字符 c1 和 c2,请你计算 S 有多少个以 c1 开头c2 结尾的子串可以采用这种简写?

输入格式
第一行包含一个整数 K。
第二行包含一个字符串 S 和两个字符 c1 和 c2。
输出格式
一个整数代表答案。 

样例输入 

4
abababdb a b 

样例输出 

提示 

符合条件的子串如下所示,中括号内是该子串:

[abab]abdb
[ababab]db
[abababdb]
ab[abab]db
ab[ababdb]
abab[abdb]
对于 20% 的数据,2 ≤ K ≤ |S | ≤ 10000。
对于 100% 的数据,2 ≤ K ≤ |S | ≤ 5 × 105。S 只包含小写字母。c1 和 c2 都是小写字母。
|S | 代表字符串 S 的长度。

思路:把字符串中等于a的下标都存起来,把等于b的下标也都存起来。然后判断两者下标之间有无大于等于k,直接加上(b的个数-当前b下标(因为cnt2等于b的个数加1,所以直接减就好,不用在加1)

#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
const int N=5e5+10;
int l[N],r[N];
int main()
{
	int k;cin>>k;
	string s;cin>>s;
	char a,b;cin>>a>>b;
	int cnt1=1,cnt2=1;
	for(int i=0;i<s.size();i++)
	{
		if(s[i]==a)
		{
			l[cnt1++]=i;
		}
		if(s[i]==b)
		{
			r[cnt2++]=i;
		}
	}
	long long ans=0;
	int idx=1;
	for(int i=1;i<cnt1;i++)
	{
		for(int j=idx;j<cnt2;j++)
		{
			if(r[j]-l[i]<k-1) continue;
			else
			{
				ans+=(cnt2-j);
				idx=j;
				break;
			}
		}
	}
	cout<<ans<<endl; 
	return 0;
}

双指针 

1、左右指针:两个指针,相向而走,中间相遇

2、快慢指针:两个指针,又快又慢,同向而行

3、灵活运用:两个指针,灵活运用,伺机而动

左右指针

盛最多水的容器

class Solution {
public:
    int maxArea(vector<int>& height) {
        if(height.size()<=1) return 0;
        int sum=0;
        int l=0,r=height.size()-1;
        while(l<r)
        {
            int num=min(height[l],height[r]);
            sum=max(num*(r-l),sum);
            sum=max(sum,num);
            if(height[l]<height[r]) l++;
            else r--;
        }
        return sum;
    }
};

小结
左右双指针法的实质是合理利用题目的规则,减少遍历的次数,从而降低时间复杂度。可以从暴力出发,想办法利用题目规则,一步一步进行优化。 

 最长连续不重复子序列

给定一个长度为 n 的整数序列,请找出最长的不包含重复的数的连续区间,输出它的长度。

输入格式

第一行包含整数 n。

第二行包含 n 个整数(均在 0∼10^5 范围内),表示整数序列。

输出格式

共一行,包含一个整数,表示最长的不包含重复的数的连续区间的长度。

数据范围

1≤n≤10^5

输入样例:

5
1 2 2 3 5

输出样例:

3

 

#include<iostream>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;
typedef pair<int,int>PII;
const int N=5e5+10;
int a[N],s[N];
int main()
{
    int n;cin>>n;
    for(int i=1;i<=n;i++)cin>>a[i];
     int sum=0;
     //一个指针一直往前走 另一个指针停留 直到遇到重复的时候 无法组成 这时另一个指针
     //向前走 直到 没有重复的 在记录-->O(n)
     for(int i=1,j=1;j<=n;j++)
     {
         s[a[j]]++;
         while(s[a[j]]>1)
         {
             s[a[i]]--;
             i++;
         }
         sum=max(sum,j-i+1);
     }
	 cout<<sum<<endl;
	return 0;
 } 

 数组元素的目标和

给定两个升序排序的有序数组 A和 B,以及一个目标值 x。

数组下标从 0 开始。

请你求出满足 A[i]+B[j]=x的数对 (i,j)。

数据保证有唯一解。

输入格式

第一行包含三个整数 n,m,x,分别表示 A 的长度,B 的长度以及目标值 x。

第二行包含 n 个整数,表示数组 A。

第三行包含 m 个整数,表示数组 B。

输出格式

共一行,包含两个整数 i 和 j。

数据范围

数组长度不超过 10^5。
同一数组内元素各不相同。
1≤数组元素≤10^9

输入样例:

4 5 6
1 2 4 7
3 4 6 8 9

输出样例:

1 1

#include<iostream>
using namespace std;
const int N=100010;
int a[N],b[N],s[N];
int main()
{
    int n,m,x;cin>>n>>m>>x;
    for(int i=0;i<n;i++) cin>>a[i];
    for(int i=0;i<m;i++) cin>>b[i];
    for(int i=0,j=m-1;i<n;i++)
    {
        while(j>=0&&a[i]+b[j]>x) j--;
        if(a[i]+b[j]==x)
        {
            cout<<i<<" "<<j;
            break;
        }
    }
    return 0;
}
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N=1e5+10;
ll n,m,x;
ll a[N],b[N];
int main()
{
    cin>>n>>m>>x;
    for(int i=0;i<n;i++) cin>>a[i];
    for(int j=0;j<m;j++) cin>>b[j];
    for(int i=0,j=m-1;i<n,j>0;)
    {
        while(a[i]+b[j]>x) j--;
        while(a[i]+b[j]<x) i++;
        if(a[i]+b[j]==x)
        {
            cout<<i<<" "<<j<<endl;
            break;
        }
    }
    return 0;
}

更小的数

天梯赛中的最长对称子串考察的与其一样

蓝桥杯2023年第十四届省赛真题-更小的数

小蓝有一个长度均为 n 且仅由数字字符 0 ∼ 9 组成的字符串,下标从 0 到 n − 1,你可以将其视作是一个具有 n 位的十进制数字 num,小蓝可以从 num 中选出一段连续的子串并将子串进行反转,最多反转一次。小蓝想要将选出的子串进行反转后再放入原位置处得到的新的数字 numnew 满足条件 numnew < num,请你帮他计算下一共有多少种不同的子串选择方案,只要两个子串在 num 中的位置不完全相同我们就视作是不同的方案。

注意,我们允许前导零的存在,即数字的最高位可以是 0 ,这是合法的。

输入格式

输入一行包含一个长度为 n 的字符串表示 num(仅包含数字字符 0 ∼ 9),

从左至右下标依次为 0 ∼ n − 1。

输出格式

输出一行包含一个整数表示答案。

样例输入

210102

样例输出

8

提示

一共有 8 种不同的方案:

1)所选择的子串下标为 0 ∼ 1 ,反转后的 numnew = 120102 < 210102 ;

2)所选择的子串下标为 0 ∼ 2 ,反转后的 numnew = 012102 < 210102 ;

3)所选择的子串下标为 0 ∼ 3 ,反转后的 numnew = 101202 < 210102 ;

4)所选择的子串下标为 0 ∼ 4 ,反转后的 numnew = 010122 < 210102 ;

5)所选择的子串下标为 0 ∼ 5 ,反转后的 numnew = 201012 < 210102 ;

6)所选择的子串下标为 1 ∼ 2 ,反转后的 numnew = 201102 < 210102 ;

7)所选择的子串下标为 1 ∼ 4 ,反转后的 numnew = 201012 < 210102 ;

8)所选择的子串下标为 3 ∼ 4 ,反转后的 numnew = 210012 < 210102 ;

对于 20% 的评测用例,1 ≤ n ≤ 100 ;

对于 40% 的评测用例,1 ≤ n ≤ 1000 ;

对于所有评测用例,1 ≤ n ≤ 5000 。

解题思路:

        中心思想:s[l] > s[r]则满足条件,答案的个数+1。

        详细解释:考虑s的所有子串[l,r], l即left,是子串的起始下标,r即right是子串的末尾下标,判断s[l] 和 s[r]的大小关系:

                若s[l] > s[r]则该子串反转后,新串<原串,满足条件,答案数+1;

                若s[l] = s[r]则将子串区间[l,r]缩小为[l+1,r-1],再判断s[l+1]和s[r-1]的大小关系;

                若s[l] < s[r]则该子串反转后,新串>原串,不满足条件。

#include<iostream>
#include<algorithm>
#include<cmath>
#include<vector>
#include<map>
using namespace std;
typedef long long ll;
map<string,int>mp;
int main()
{
	string s;cin>>s;
	int n=s.size();//s的长度
	ll sum=0;
	for(int len=2;len<=n;len++)
	{
		for(int j=0;j+len<=n;j++)
		{
			int l=j,r=j+len-1;
			//如果相等一直找 看能否找到后面的比前面的小的数(位置翻转之后都是对应的 有点双指针的感觉) 
			while(s[l]==s[r]&&l<r) l++,r--;
			if(s[l]>s[r]&&l<r) sum++;
		}
	 } 
	 cout<<sum<<endl;
	
	return 0;
}

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值