BFS(Flood Fill)

本文介绍了FloodFill算法和BFS在解决图形处理问题中的应用,如池塘计数、城堡问题和识别山峰与山谷。FloodFill能在线性时间复杂度内找到连通块,BFS用于寻找最小路径并避免栈溢出。通过实例展示了如何使用这些算法解决问题,并提供了相应的C++代码实现。

目录

Flood Fill 算法:可以在线性时间复杂度内,找到某个点所在的连通块

池塘计数 

 城堡问题

 山峰和山谷

BFS特点:求最小,基迭代,不会爆栈

Flood Fill 算法:可以在线性时间复杂度内,找到某个点所在的连通块

池塘计数 

农夫约翰有一片 N∗M 的矩形土地。

最近,由于降雨的原因,部分土地被水淹没了。

现在用一个字符矩阵来表示他的土地。

每个单元格内,如果包含雨水,则用”W”表示,如果不含雨水,则用”.”表示。

现在,约翰想知道他的土地中形成了多少片池塘。

每组相连的积水单元格集合可以看作是一片池塘。

每个单元格视为与其上、下、左、右、左上、右上、左下、右下八个邻近单元格相连。

请你输出共有多少片池塘,即矩阵中共有多少片相连的”W”块。

输入格式

第一行包含两个整数 N 和 M

接下来 N行,每行包含 M个字符,字符为”W”或”.”,用以表示矩形土地的积水状况,字符之间没有空格。

输出格式

输出一个整数,表示池塘数目。

数据范围

1≤N,M≤1000

输入样例:
10 12
W........WW.
.WWW.....WWW
....WW...WW.
.........WW.
.........W..
..W......W..
.W.W.....WW.
W.W.W.....W.
.W.W......W.
..W.......W.
输出样例:
3

 

#include<iostream>
#include<queue>
#include<cstring>
using namespace std;
typedef pair<int,int>PII;
const int N=1010;
char str[N][N];
bool st[N][N];
int dx[8]={1,1,0,-1,-1,-1,0,1};
int dy[8]={0,1,1,1,0,-1,-1,-1};
void bfs(int x1,int y1)
{
    queue<PII>q;
    str[x1][y1]='.';
    st[x1][y1]=1;
    q.push({x1,y1});
    while(q.size())
    {
        auto t=q.front();
        q.pop();
        int x=t.first,y=t.second;
        for(int i=0;i<8;i++)
        {
            int x2=x+dx[i],y2=y+dy[i];
            if(str[x2][y2]=='W'&&!st[x2][y2])
            {
                q.push({x2,y2});
                str[x2][y2]='.';
                st[x2][y2]=1;
            }
        }
    }
}
int main()
{
    int n,m;scanf("%d%d",&n,&m);
    getchar();
    for(int i=1;i<=n;i++)
    for(int j=1;j<=m;j++)
    cin>>str[i][j];
    int num=0;
    for(int i=1;i<=n;i++)
    for(int j=1;j<=m;j++)
    {
        if(str[i][j]=='W'&&!st[i][j])
        {
            bfs(i,j);
            num++;
        }
    }
    cout<<num<<endl;
}

 城堡问题

  1   2   3   4   5   6   7  
   #############################
 1 #   |   #   |   #   |   |   #
   #####---#####---#---#####---#
 2 #   #   |   #   #   #   #   #
   #---#####---#####---#####---#
 3 #   |   |   #   #   #   #   #
   #---#########---#####---#---#
 4 #   #   |   |   |   |   #   #
   #############################
           (图 1)

   #  = Wall   
   |  = No wall
   -  = No wall

   方向:上北下南左西右东。

图1是一个城堡的地形图。

请你编写一个程序,计算城堡一共有多少房间,最大的房间有多大。

城堡被分割成 m∗n个方格区域,每个方格区域可以有0~4面墙。

注意:墙体厚度忽略不计。

输入格式

第一行包含两个整数 m 和 n,分别表示城堡南北方向的长度和东西方向的长度。

接下来 m 行,每行包含 n 个整数,每个整数都表示平面图对应位置的方块的墙的特征。

每个方块中墙的特征由数字 P 来描述,我们用1表示西墙,2表示北墙,4表示东墙,8表示南墙,P 为该方块包含墙的数字之和。

例如,如果一个方块的 P 为3,则 3 = 1 + 2,该方块包含西墙和北墙。

城堡的内墙被计算两次,方块(1,1)的南墙同时也是方块(2,1)的北墙。

输入的数据保证城堡至少有两个房间。

输出格式

共两行,第一行输出房间总数,第二行输出最大房间的面积(方块数)。

数据范围

1≤m,n≤50
0≤P≤15

输入样例:
4 7 
11 6 11 6 3 10 6 
7 9 6 13 5 15 5 
1 10 12 7 13 7 5 
13 11 10 8 10 12 13 
输出样例:
5
9

本题的关键用二进制&1表示是否有那面墙

#include<iostream>
#include<queue>
using namespace std;
const int N=55;
typedef pair<int,int>PII;
int a[N][N];
bool st[N][N];
int n,m;
//这个次序也很重要不能错了 要不就不能一一匹配了
int dx[4]={0,-1,0,1},dy[4]={-1,0,1,0};
int bfs(int x1,int y1)
{
    st[x1][y1]=1;
    queue<PII>q;
    q.push({x1,y1});
    int cnt=0;
    while(q.size())
    {
        cnt++;
        PII t=q.front();
        q.pop();
        int x2=t.first,y2=t.second;
        for(int i=0;i<4;i++)
        {
            int x=x2+dx[i],y=y2+dy[i];
            if(st[x][y]) continue;
            if(x<1||x>n||y<1||y>m) continue;
            //本题中最为关键的判断是否有墙,通过是否位运算 二进制去看
            if((a[x2][y2]>>i)&1) continue;
            st[x][y]=1;
            q.push({x,y});
        }
    }
    return cnt;
}
int main()
{
    cin>>n>>m;
    for(int i=1;i<=n;i++)
    for(int j=1;j<=m;j++) cin>>a[i][j];
    int cnt=0;
    int max1=0;
    for(int i=1;i<=n;i++)
    for(int j=1;j<=m;j++)
    if(!st[i][j])
    {
        cnt++;
        max1=max(max1,bfs(i,j));
    }
    cout<<cnt<<endl<<max1<<endl;
    return 0;
}

 山峰和山谷

 

FGD小朋友特别喜欢爬山,在爬山的时候他就在研究山峰和山谷。

为了能够对旅程有一个安排,他想知道山峰和山谷的数量。

给定一个地图,为FGD想要旅行的区域,地图被分为 n×n 的网格,每个格子 (i,j)的高度 w(i,j) 是给定

若两个格子有公共顶点,那么它们就是相邻的格子,如与 (i,j) 相邻的格子有(i−1,j−1),(i−1,j),(i−1,j+1),(i,j−1),(i,j+1),(i+1,j−1),(i+1,j),(i+1,j+1)

我们定义一个格子的集合 S 为山峰(山谷)当且仅当:

  1. S 的所有格子都有相同的高度。
  2. S 的所有格子都连通。
  3. 对于 s 属于 S,与 s 相邻的 s′ 不属于 S,都有 ws>ws′(山峰),或者 ws<ws′(山谷)。
  4. 如果周围不存在相邻区域,则同时将其视为山峰和山谷。

你的任务是,对于给定的地图,求出山峰和山谷的数量,如果所有格子都有相同的高度,那么整个地图即是山峰,又是山谷。

输入格式

第一行包含一个正整数 n,表示地图的大小。

接下来一个 n×n 的矩阵,表示地图上每个格子的高度 w。

输出格式

共一行,包含两个整数,表示山峰和山谷的数量。

数据范围

1≤n≤1000,
0≤w≤10^9

输入样例1:
5
8 8 8 7 7
7 7 8 8 7
7 7 7 7 7
7 8 8 7 8
7 8 8 8 8
输出样例1:
2 1
输入样例2:
5
5 7 8 3 1
5 5 7 6 6
6 6 6 2 8
5 7 2 5 8
7 1 0 1 7
输出样例2:
3 3
样例解释

样例1:

 

样例2:

 如果周围都比它低的话他就是山峰 如果周围都比它高的它就是山谷 如果高度都一样 它既是山谷又是山峰  

#include<iostream>
#include<queue>
using namespace std;
const int N=1010;
typedef pair<int,int>PII;
int a[N][N];
bool st[N][N];
int n;
int flag,flag1;
int dx[8]={1,-1,0,0,1,1,-1,-1},dy[8]={0,0,-1,1,1,-1,1,-1};
void bfs(int x1,int y1)
{
    queue<PII>q;
    st[x1][y1]=1;
    q.push({x1,y1});
    int num=a[x1][y1];
    while(q.size())
    {
        auto t=q.front();
        q.pop();
        int x2=t.first,y2=t.second;
        for(int i=0;i<8;i++)
        {
            int x=x2+dx[i],y=y2+dy[i];
            if(x<1||x>n||y<1||y>n) continue;
  //这一步不能加 如果加了那他就不遍历了 就不知道这个num附近是否有比大还是小的数了
  // if(st[x][y]) continue;
            if(a[x][y]<num)
            {
                flag=1;
            }
            else if(a[x][y]>num)
            {
                flag1=1;
            }
            else if(a[x][y]==num&&!st[x][y])
            {
                q.push({x,y});
                st[x][y]=1;
            }
        }
    }
}
int main()
{
    cin>>n;
    for(int i=1;i<=n;i++)
    for(int j=1;j<=n;j++) cin>>a[i][j];
    //num1山峰 num2山谷
    int num1=0,num2=0;
    for(int i=1;i<=n;i++)
    {
        for(int j=1;j<=n;j++)
        {
            //flag山峰 有比num矮的数使flag=1 flag1山谷 有num大的数
            flag=0;flag1=0;
            if(!st[i][j])
            {
                bfs(i,j);
              //num1山峰 num2山谷
                if(flag&&flag1) continue;
                if((flag&&!flag1)||(!flag&&!flag1)) num1++;
                if((!flag&&flag1)||(!flag&&!flag1))num2++;
            }
        }
    }
    cout<<num1<<" "<<num2<<endl;
    return 0;
}

 

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值