CHFS数据区县码(最全版本)CHFS数据区县码(2011-2019年)。仅在2013和2015年缺失96个观测值,其他年份均完整,数据真实可用。保质保量、好评初潮。拍下即发货。

CHFS数据区县码(最全版本)

CHFS数据区县码(2011-2019年)。仅在2013和2015年缺失96个观测值,其他年份均完整,数据真实可用。保质保量、好评初潮。拍下即发货。

CHFS(China Household Finance Survey)数据清洗代码通常指的是对CHFS调查数据进行预处理的代码。CHFS是中国家庭金融调查与研究中心进行的一项大规模家庭金融调查数据,包含了家庭收支、资产负债、投资等经济信息。数据清洗是数据分析中一个至关重要的步骤,主要是为了保证数据的准确性和可靠性。 数据清洗通常包括以下几个步骤: 1. 缺失处理:检查数据集中的缺失,根据缺失情况决定是删除含有缺失的记录,还是对缺失进行填充(比如用平、中位数或者众数填充)。 2. 异常处理:识别并处理数据中的异常,这些可能是由于输入错误或其他原因造成的,可以通过统计方法或者基于业务逻辑来判断并处理。 3. 数据格式统一:确保数据的格式统一,如日期、货币单位、数格式等,以便进行后续的数据分析。 4. 数据转换:根据需要对数据进行转换,如将分类变量转换为虚拟变量(哑变量),进行数据标准化或归一化等。 5. 重复数据处理:检查并删除重复的数据记录,确保数据集中的每一行都是唯一的。 下面是一个简单的数据清洗的伪代码示例: ```python import pandas as pd from sklearn.impute import SimpleImputer # 加载数据 df = pd.read_csv('chfs_data.csv') # 缺失处理 # 假设我们的数据集中,'age'列中存在一些缺失 imputer = SimpleImputer(strategy='mean') # 使用填充缺失 df['age'] = imputer.fit_transform(df[['age']]) # 异常处理 # 假设我们根据业务逻辑设定龄的正常范围是18-99岁 age_range = df[(df['age'] >= 18) & (df['age'] <= 99)] # 数据格式统一 # 假设日期列需要统一为YYYY-MM-DD格式 df['survey_date'] = pd.to_datetime(df['survey_date'], format='%Y-%m-%d') # 数据转换 # 对于分类变量,可以使用pd.get_dummies进行转换 df = pd.get_dummies(df, columns=['education']) # 删除重复数据 df = df.drop_duplicates() # 保存清洗后的数据 df.to_csv('chfs_cleaned_data.csv', index=False) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值