题目描述:
此题用到深度优先搜索
经典DFS算法:
代码如下:
#include<iostream>
#include<cstdlib>//abs函数的头文件!
using namespace std;
int sum,n;//sun用来存储方案总数,n用来存储皇后个数,也是棋盘的大小
int x[12]={0};//用来存储列的值,初始化为0;在算法中列会更新,不用担心冲突
int pd(int a){//判定函数:用来判定当下列上的值是否合理
for(int i=1;i<a;i++){//对a行前面的值进行判断所以没有等于号
if(abs(a-i)==abs(x[a]-x[i]))return 0;//斜率相等,在对角线上,不合理,不能放置
else if(x[a]==x[i]) return 0;//在同一列上,不能放置
}
return 1;
}
int check(int a){//检查函数,用来检查是否一个方案形成
if(a>n){
sum++;
return 1;//返回1,则dfs调用结束
}
else return 0; //返回0,则会在dfs中用到,else,判断皇后应该放在哪一列
}
void dfs(int a){//DFS主函数,传的a用于对没一行进行判断
if(check(a)){
return;
}
else{
for(int i=1;i<=n;i++){//对每一列进行判断
x[a]=i;
if(pd(a)){
dfs(a+1);//继续在下一行放皇后
}
else continue;//不满足条件,对下一列进行判断
}
}
}
int main(){
cin>>n;//输入棋盘的大小,也是需要放置皇后的总个数。一n多用
dfs(1);//调用dfs函数,从1开始,1是初始值
cout<<sum<<endl;//输出总的方案数
return 0;
}