文章目录
本周我的主要任务是象数图画功能探索:
象树图画期望效果:通过动态可视化手段展示卦变与象数变化。系统接入易学中心提供的卦变与象数变化数据,结合大模型(DeepSeek)生成描述文本,并通过动画工具(探索中)生成动态象数图画。用户可点击卦象节点,查看卦变过程及其对卦象的影响
虽然刚开始会有点无从下手的感觉,但是抓住目的和方向去查找实现的具体技术和方法总能逐渐理清思路,找到合适的解决方案
根据团队给出的资料,我整理了大体从两条路线出发的探索技术与方案思路
一、大模型驱动图像生成
由大模型(deepseek)根据数据库中的信息给出用户当前卦象,卦象变化类型,变化后的卦象,然后通过deepseek生成文字描述(或者代码),把这些信息输入到能够输入文字或代码的动画图像生成软件(或者是通过技术),输出我们想要的动态图,然后将结果返回给前端,并且结合deepseek的文字描述展示出来;
探索的实现方法:
PS.由于现在还是探索时期,主要以搜索可行性方法为主,加上对涉及的技术还不够了解与熟悉,先借助大模型生成简单的图像示例,以便捷地展示动态图像效果,后续会有更加具体的可行技术方案与具体的标准卦象卦变示例。
前端可视化方案
1.SVG+CSS+js:
- 使用SVG绘制卦象图像,通过CSS动画实现长线变成短线的动态效果。
- 利用
<animate>
标签或者CSS的@keyframes
规则,可以实现SVG图像的动态变化。
示例演示:
2.SVG + D3.js:
- 使用 D3.js 可以高效处理数据并生成交互式的SVG动画。
- 适合需要展示数据关系的场景,比如卦变过程的动态流转图。
示例演示:
3.Canvas + JavaScript:
- 使用 HTML5 Canvas 搭配 Fabric.js 或 Konva.js,实现复杂的自定义绘图和交互动画。
- 提供良好的性能,适合绘制符号、节点连接等。
暂无示例
二、基于图像处理动态变化过程
由于大模型生成的卦象图片过于不稳定,不准确,或者无法做到直接的输入输出而是需要人工辅助图像生成,所以我们采用另一种路线就是根据用户输入的信息,让deepseek从数据库中获取到对应的,提供的标准卦象图像,然后通过一些图像处理技术,对卦变前后两个标准图像进行过渡处理,描绘出卦象变化的动态过程。
在卦变前后两个标准图像之间进行过渡处理,以下是几种探索到的常用的技术:
1. 图像渐变 (Crossfade Transition)
- 使用逐帧透明度变化实现平滑过渡。
- 优点:简单快速,适合静态图像的过渡。
- 工具:OpenCV、Pillow 或 CSS。
2. 形态变形 (Morphing)
- 通过特征点检测和 Delaunay 三角剖分,对两张图像进行插值生成中间帧。
- 优点:平滑且自然,适用于形态变化的场景。
- 工具:Python 的 OpenCV、imageio 或 MATLAB。
3. 光流法 (Optical Flow)
- 计算图像像素之间的运动场,生成连续的过渡图像。
- 优点:过渡连贯,适用于复杂场景。
- 工具:OpenCV、FlowNet 等。
4. 像素插值 (Pixel Interpolation)
- 使用线性插值或双线性插值实现像素级的渐变。
- 优点:简单易实现。
- 工具:NumPy、Pillow。
最后我尝试运用OpenCV来进行产生卦变的GIF,效果很显著:
通过线性渐变插值实现卦象图像的动画过渡。采用 OpenCV 进行图像处理,将卦变前后的两幅图像按像素级别进行混合。通过 cv2.addWeighted()
方法,以不同的权重比例逐步融合两张图像,形成平滑的过渡效果。整个过程生成了一系列帧,模拟卦象由初始状态逐渐变化到最终状态的动画。最后,借助 imageio 将这些帧合成为 GIF 动画,从而直观展示卦象变化的动态过程。实现过程中我们返回GIF文件返回给前端综合deepseek的文字描述展示给用户即可。
最后简略生成的GIF:
总结:
第一种路线通过大模型自动生成图像和动画,减少人工干预,自动化程度高,快速迭代,实时生成的动画更具互动性和沉浸感,用户体验良好。但是大模型生成的图像可能存在不准确或失真的情况,生成效果受限于模型的训练数据和生成能力。故障排查和优化困难,需要不断调整模型和动画生成逻辑,所以有准确性难保障,依赖模型质量,调试成本高的缺点,实现难度大。
第二种路线使用标准卦象图像,训练大模型进行卦变前后的卦象匹配,确保图像表现符合传统易学理论,减少大模型生成的不确定性,通过图像处理算法精细调整过渡效果。但是需要人工维护标准图像库和调整过渡效果,动态性较弱
目前的计划是先进行第一种路线的探索,通过大模型生成初步的图像和动画,观察其生成效果和用户反馈。在此过程中,我们可以积累实际数据,识别生成过程中的问题和不足,同时评估大模型在不同场景下的表现。另一方面,第二种路线的可行性非常高,依托于标准卦象图像库和成熟的图像处理技术,能够有效保障图像的准确性和符合传统易学理论的要求。因此,在第一种路线完成初步验证后,如果模型生成的结果存在较大的偏差或无法满足用户期望,我们将切换至第二种路线,利用人工维护的标准图像库和精细的过渡算法,确保最终的动态展示效果达到理想水平。通过这样的双路线策略,我们既能充分发挥大模型的创新性和实时性优势,又能保障项目最终落地的可靠性和稳定性~