力扣 简单 第九题:回文数
题目描述
给定一个整数 x x x ,如果 x x x 是一个回文整数,返回 t r u e true true ;否则,返回 f a l s e false false。
回文数
是指正序(从左向右)和倒序(从右向左)读都是一样的整数。
例如,121 是回文,而 123 不是。
示例 1:
输入:x = 121
输出:true
示例 2:
输入:x = -121
输出:false
解释:从左向右读, 为 -121 。 从右向左读, 为 121- 。因此它不是一个回文数。
示例 3:
输入:x = 10
输出:false
解释:从右向左读, 为 01 。因此它不是一个回文数。
代码
1.简单写法
反转数字,但由于 − 2 31 < = x < = 2 31 − 1 -2^{31}<= x<= 2^{31}-1 −231<=x<=231−1,故采用long long类型,测试通过,代码如下:
class Solution {
public:
bool isPalindrome(int x) {
if(x<0)
return false;
else if(x==0)
return true;
else
{
long long b=0,a=x;
while(a!=0)
{
b=b*10+a%10;
a/=10;
}
if(b==x)
return true;
else
return false;
}
}
};
2.改进
long long 数据类型的使用可能会增加内存的使用量,并且其运算速度可能会比 i n t int int 慢,故进行改进。反转数字时,若数字过大可能会导致超出 i n t int int范围,那我们就只反转数字的一半。对于奇数位的回文数来说,前 ( c n t − 1 ) / 2 (cnt-1)/2 (cnt−1)/2位和后 ( c n t − 1 ) / 2 (cnt-1)/2 (cnt−1)/2位反转后的数字是相同的;对于偶数位回文数来说,前 c n t / 2 cnt/2 cnt/2位和后 c n t / 2 cnt/2 cnt/2反转后的数字是相同的。代码如下:
class Solution {
public:
bool isPalindrome(int x) {
//x为负数和x的最后一位为0的情况
if(x<0||(x%10==0&&x!=0))
return false;
else
{
int revertedNum=0;
while(x>revertedNum)
{
revertedNum=revertedNum*10+x%10;
x/=10;
}
if(x==revertedNum/10||x==revertedNum)
return true;
else
return false;
}
}
};