模型意识对比学习:摆脱训练中的一致性-容忍度困境

论文出处:

ICML2023

Model-Aware Contrastive Learning: Towards Escaping Uniformity-Tolerance Dilemma in Training

什么是uniformity-tolerance困境?

温度参数 τ 的设置会影响模型性能

  • 如果 τ 太小,模型会对训练不足的阶段施加过大的惩罚,导致难以区分潜在阳性样本,虽然模型的均匀性会变好但是容忍性会下降
  • 如果 τ 太大,有助于探索语义结构,对潜在阳性样本的容忍度增加,但是均匀性会下降

体现在公式上:负样本xj上的惩罚权重分布为Pij,fi和gj​是样本的特征表示,K是正样本的数量,τ是温度参数,此公式表明,对于每个负样本,其惩罚权重取决于它与某个正样本之间的相似度(由特征表示的点积计算得出),并且所有负样本的惩罚权重之和归一化

显然,它有温度系数控制

  • 随着温度系数减小,整个式子形状会变得更加尖锐,这意味着较小的温度会对高相似区域造成较大的惩罚,这促进嵌入的均匀性,但对潜在正样本的容忍性减小
  • 随着温度系数增大,式子形状更平坦,倾向与给所有负样本相同大小惩罚,优化过程对LPs的容忍性更强,而对均匀性的关注较少

简单来说,这个困境意味着如果我们太注重让嵌入空间保持一致(即每个样本的表示都相似),可能会牺牲掉区分不同类别的能力;而如果我们太注重区分不同类别,又可能使得嵌入空间不够一致。

怎么解决uniformity-tolerance困境?

采用MACL模型,根据模型在训练过程的对齐程度来动态调整温度参数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值