论文出处:
ICML2023 Model-Aware Contrastive Learning: Towards Escaping Uniformity-Tolerance Dilemma in Training |
什么是uniformity-tolerance困境?
温度参数 τ 的设置会影响模型性能
- 如果 τ 太小,模型会对训练不足的阶段施加过大的惩罚,导致难以区分潜在阳性样本,虽然模型的均匀性会变好但是容忍性会下降
- 如果 τ 太大,有助于探索语义结构,对潜在阳性样本的容忍度增加,但是均匀性会下降
体现在公式上:负样本xj上的惩罚权重分布为Pij,fi和gj是样本的特征表示,K是正样本的数量,τ是温度参数,此公式表明,对于每个负样本,其惩罚权重取决于它与某个正样本之间的相似度(由特征表示的点积计算得出),并且所有负样本的惩罚权重之和归一化
显然,它有温度系数控制
- 随着温度系数减小,整个式子形状会变得更加尖锐,这意味着较小的温度会对高相似区域造成较大的惩罚,这促进嵌入的均匀性,但对潜在正样本的容忍性减小
- 随着温度系数增大,式子形状更平坦,倾向与给所有负样本相同大小惩罚,优化过程对LPs的容忍性更强,而对均匀性的关注较少
简单来说,这个困境意味着如果我们太注重让嵌入空间保持一致(即每个样本的表示都相似),可能会牺牲掉区分不同类别的能力;而如果我们太注重区分不同类别,又可能使得嵌入空间不够一致。
怎么解决uniformity-tolerance困境?
采用MACL模型,根据模型在训练过程的对齐程度来动态调整温度参数