2024山东大学软件学院项目实训开发日志(4)-封装

封装
import sys

# 将上级目录中的embedding和database两个子目录添加到系统路径中,以便可以导入其中的模块
sys.path.append("../embedding")
sys.path.append("../database")

import os

# 从database目录的create_db模块导入create_db和load_knowledge_db函数
from database.create_db import create_db, load_knowledge_db
# 从embedding目录的call_embedding模块导入get_embedding函数
from embedding.call_embedding import get_embedding

# 数据库文件存储路径
DEFAULT_DB_PATH = "../database/knowledge_db"

# 存储向量数据库生成的向量数据
DEFAULT_PERSIST_PATH = "../database/vector_data_base"
# 定义一个函数用于获取或创建向量数据库对象
def get_vectordb(file_path: str = DEFAULT_DB_PATH, persist_path: str = DEFAULT_PERSIST_PATH, embedding="zhipuai", embedding_key: str = "7cf22af17f2d01144caf46eda1550b1e.hu1OH9O4YeKTWlgM"):
    """
    根据给定参数返回向量数据库对象。
    输入参数:
    - file_path: 文件路径,用于创建数据库时指定数据文件路径
    - persist_path: 持久化路径,用于存储数据库文件
    - embedding: 指定使用的嵌入模型,默认为"zhipuai"
    - embedding_key: 用于访问嵌入模型API的密钥
    """
    # 根据指定的embedding类型和API密钥获取embedding对象
    embedding = get_embedding(embedding=embedding, embedding_key=embedding_key)

    # 检查指定的持久化路径是否存在
    if os.path.exists(persist_path):
        contents = os.listdir(persist_path)
        # 如果路径存在但目录为空
        if len(contents) == 0:
            # 创建数据库,并加载知识库到向量数据库对象
            vectordb = create_db(file_path, persist_path, embedding)
            vectordb = load_knowledge_db(persist_path, embedding)
        else:
            # 如果目录不为空,直接从持久化路径加载向量数据库对象
            vectordb = load_knowledge_db(persist_path, embedding)
    else:
        # 如果指定的持久化路径不存在,从头开始创建向量数据库
        vectordb = create_db(file_path, persist_path, embedding)
        vectordb = load_knowledge_db(persist_path, embedding)

    return vectordb


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值