- 博客(23)
- 收藏
- 关注
原创 基于llamafactory微调与vllm部署的LLM情感模型示例
训练的时候可以多训练两轮!3. 写一个app.py进行验证。streamlit默认端口为。
2025-12-15 16:15:54
825
原创 机器学习——SVM支持向量机详解
支持向量机(SVM)是一种监督学习算法,通过寻找最优超平面实现分类。其核心思想是使分类间隔最大化,提高模型泛化能力。当数据线性可分时使用硬间隔,存在噪声时采用软间隔并通过惩罚系数C平衡间隔宽度和分类误差。对于非线性问题,通过核函数将数据映射到高维空间实现可分。SVM算法原理涉及构建拉格朗日函数并求解对偶问题,最终得到分类决策函数。该方法在小样本、非线性及高维模式识别中表现出色。
2025-10-03 18:47:39
1143
1
原创 机器学习——聚类kmeans算法详解
摘要 本文介绍了聚类算法的基本原理和实现方法,重点讲解了KMeans算法的实现流程。主要内容包括:1) 聚类算法分类,包括KMeans、层次聚类、DBSCAN和谱聚类等方法;2) KMeans算法的详细步骤,包括初始质心选择、距离计算、质心更新等过程;3) 聚类效果评价指标,如SSE误差平方和、SC系数、CH系数等;4) 肘部法确定最佳聚类数的方法;5) 客户数据分析案例,展示了从数据预处理到聚类的完整实现过程。文章通过图解和代码示例直观展示了聚类算法的应用。
2025-10-01 14:36:59
948
1
原创 机器学习——朴素贝叶斯详解
本文介绍了概率论中的朴素贝叶斯算法和特征降维技术。朴素贝叶斯基于贝叶斯公式,通过特征条件独立假设简化计算,并使用拉普拉斯平滑处理零概率问题。特征降维方法包括:1)低方差过滤法,去除信息量少的特征;2)主成分分析(PCA),通过线性变换压缩数据维度;3)相关系数法(皮尔逊和斯皮尔曼),衡量特征间相关性以筛选特征。这些方法能有效提升模型性能,减少计算复杂度。文中还提供了Python实现示例,如使用sklearn进行PCA降维和相关系数计算。
2025-09-28 15:20:19
816
原创 机器学习——集成学习详解
本文系统介绍了集成学习的两种核心思想:Bagging和Boosting。Bagging通过有放回抽样并行训练多个弱学习器,采用平权投票决策,代表算法是随机森林;Boosting则串行训练,关注前序模型错误样本,通过加权投票集成,代表算法是Adaboost。文章详细讲解了随机森林的构建过程及Python实现,并以泰坦尼克号数据为例进行演示。对于Adaboost,重点阐述了其自适应提升机制、权值调整策略和算法推导过程,通过具体案例说明了样本权重和模型权重的计算方法。两种方法在数据采样、投票方式和学习顺序上存在显
2025-09-28 08:47:06
964
原创 机器学习——决策树详解
决策树算法比较与选择 决策树是一种常用的机器学习算法,主要包括ID3、C4.5和CART三种主要类型。ID3树使用信息增益作为特征选择标准,但倾向于选择取值多的特征;C4.5树引入信息增益率来修正这一偏差;CART树则采用基尼指数,适用于分类和回归任务。算法选择应基于数据特点:ID3适用于离散特征,C4.5能处理连续值和缺失值,CART则更适合处理数值型数据。实际应用中需注意过拟合问题,可通过剪枝等方法优化模型性能。理解各算法的核心指标(信息增益、增益率和基尼指数)是正确选择和应用决策树的关键。
2025-09-26 15:53:01
783
3
原创 机器学习——逻辑回归详解
逻辑回归是一种重要的分类模型,通过线性回归的输出作为输入,利用Sigmoid函数将结果映射为概率值。其核心原理是极大似然估计,通过最大化似然函数来估计模型参数。逻辑回归的损失函数采用交叉熵损失,能够有效区分不同预测情况下的惩罚力度。在实现上,sklearn提供了LogisticRegression API,支持多种正则化方式。分类效果评估可借助混淆矩阵,计算精确率(查准率)和召回率(查全率)等指标。实际应用中需要注意数据预处理、缺失值处理等环节,案例演示了乳腺癌数据集的分类实现。
2025-09-24 19:24:01
590
原创 机器学习——线性回归详解
本文介绍了线性回归的定义、损失函数及其优化方法。线性回归通过回归方程对自变量和因变量关系建模,数学表达式为$h(w)=w^Tx+b$。损失函数衡量预测误差,常用均方误差(MSE)和平均绝对误差(MAE)。优化方法包括正规方程(直接求解权重矩阵)和梯度下降(迭代更新参数),后者又分为全梯度下降(FGD)、随机梯度下降(SGD)、小批量梯度下降(mini-batch)和随机平均梯度下降(SAG)。正规方程计算简单但不适用于大数据,梯度下降适合大规模数据但需调参。两者各有优劣,需根据实际情况选择。
2025-09-23 21:12:54
1105
原创 HCIP——路由控制学习笔记
摘要 本文主要介绍了网络设备中控制平面与数据平面的概念及区别,并详细讲解了路由策略的实现方法。控制平面负责网络决策(如路由表生成),数据平面执行实际数据转发。路由策略通过三个步骤实现:路由抓取(使用ACL或前缀列表)、路由过滤、策略调用。重点分析了ACL和前缀列表(ip-prefix)两种匹配工具的特点,其中ACL只能匹配路由前缀而无法区分掩码,前缀列表则可精确匹配前缀和掩码范围。最后通过实例演示了filter-policy在不同路由协议(RIP和OSPF)中的应用效果。
2025-09-19 15:57:21
980
原创 HCIP——VRF基础学习笔记
在生产网络和管理网络之间,往往存在一个核心交换机,其作用是介入客户端和服务器,但核心交换机往往价格昂贵,如图所示,假设两个服务器都存在于一个网段,假设我们将两个交换机减少为一个交换机,但我们又需要保证生产和管理网段的隔离,此时我们就需要将这一个交换机虚拟为两个,这种技术称为VRF那么能否使用ACL隔离你?答案是否定的,因为ACL在二层,而隔离网络需要在三层。
2025-09-04 14:38:16
740
原创 HCIP——MPLS学习笔记
MPLS技术通过标签转发机制显著提升数据传输效率。传统IP路由需逐条匹配路由表,而MPLS采用固定长度标签(如"10104")实现快速转发,避免了变长子网掩码的复杂计算。MPLS域由标签交换路由器(LSR)构成,包括边缘设备(LER)和核心设备。配置方式分为静态MPLS(手工指定标签)和动态MPLS(通过LDP协议自动分配标签),后者基于IGP协议运行,可自动建立标签交换路径(LSP)。特别地,3号标签支持次末跳弹出机制,优化转发流程。MPLS还能通过隧道技术解决BGP路由黑洞问题,确保
2025-08-31 13:35:02
895
原创 HCIP——BGP协议学习笔记
使用AA:nn的方式:aa和nn的取值范围都是0-65535两个数值的意义都是由管理员来去定义可以根据aa:nn的方式【类似tag的方式】进行属性修改# 开启团体属性传递# 团体列表--专门用来抓取团体属性使用团体号:取值范围0-42亿(一般不使用)
2025-08-28 16:24:19
695
原创 HCIP——IS-IS中间系统到中间系统协议学习笔记
IS-IS是一种高效的内部网关协议,主要用于运营商网络和大型企业网。文章首先介绍了IS-IS的基础知识,包括NSAP/NET地址结构、路由器级别(L1/L2/L1-2)、区域划分和邻居建立规则。重点分析了IS-IS的报文类型(HELLO/LSP/SNP)及其功能类比OSPF协议,并详细说明了广播和P2P网络中的DR选举机制(DIS)差异。此外,文章还深入探讨了IS-IS的高级特性,包括邻居建立的三次握手过程、链路状态信息交互机制(CSNP/PSNP/LSP)以及在P2P和MA网络中的不同同步方式。最后总结了
2025-08-06 17:03:51
1186
原创 HCIP——OSPF学习笔记
什么是LSA?链路状态通告信息,存放在LSDB一类LSA包含路由器自身的直连状态+路由器自身的角色(ABR,ASBR)一类LSA拥有四种Link Type:Stub net:叶子信息Transnet :直连为广播或者NBMA时的邻居信息P2P:直连为P2P或者P2MP时的邻居信息Vlink:虚链路的邻居信息二类LSA网络类型为广播或者NBMA时,使用DR所在的接口IP地址伪节点:树干信息+叶子信息三类LSA。
2025-08-03 18:06:11
994
原创 HCIP——堆叠技术+DHCP中继学习笔记
本文摘要: 堆叠技术部分详细介绍了交换机堆叠的基础概念,包括堆叠系统角色(主/备/从交换机)、三种选举方式(运行时间优先、堆叠优先级、MAC地址比较)、接口类型(逻辑/物理接口)、堆叠拓扑结构(串形/环形)以及CSS ID机制。重点讲解了堆叠分裂时的MAD多路检测解决方案及其工作原理。 DHCP部分涵盖DHCP中继原理和配置方法,说明如何在终端与服务器不在同一广播域时通过中继传递请求。同时介绍了DHCP Snooping技术来防御DHCP饿死攻击,包括其工作原理和配置步骤,强调需要在全局、VLAN和接口三个
2025-07-29 15:48:54
1150
原创 HCIP——MSTP协议学习笔记
本文介绍了MSTP和VRRP两种网络冗余技术的原理与应用。MSTP通过建立多生成树实例解决了RSTP存在的次优路径和负载不均衡问题,允许不同VLAN流量走不同路径。VRRP则通过虚拟路由器提供网关冗余,包含主备选举、抢占机制、链路检测等功能,并可与BFD技术配合实现快速故障检测。文中详细说明了两种技术的配置命令和参数设置,包括MSTP域配置、VRRP优先级调整和BFD会话建立等,为构建高可用网络提供了实用指导。
2025-07-25 20:38:13
835
原创 HCIP——RSTP协议学习笔记
RSTP协议在STP基础上进行了多项优化改进:1)端口角色新增AP/BP,状态简化为3种;2)引入PA机制实现快速收敛,总时间从50秒降至1-2秒;3)支持根端口快速切换和次优BPDU处理;4)新增边缘端口特性。同时提供多种保护机制:BPDU保护防止边缘端口异常接入、根保护维持网络拓扑稳定、环路防护处理单通故障、TC防护抵御泛洪攻击。华为设备在实现STP时已部分借鉴RSTP特性,如支持EP端口和AP角色优化。这些改进显著提升了生成树协议的收敛速度和网络可靠性。
2025-07-25 14:08:50
1047
原创 HCIP——交换特性学习笔记
本文介绍了网络协议配置和交换高级特性。第一部分展示RIP协议(已淘汰)的配置实验,通过OSPF和RIP协议分别实现AR1对100.1.1.1和100.2.2.2的路由学习。第二部分详解交换高级特性:1)mux-vlan实现主VLAN与子VLAN间的灵活互通;2)端口隔离通过隔离组控制同一VLAN内的端口通信;3)ARP代理包括路由式、VLAN内和VLAN间三种类型,解决因网络拓扑与设备认知差异导致的通信问题。文中提供了详细的配置命令和原理说明,并配有拓扑图帮助理解各技术的工作机制。
2025-07-22 15:37:59
977
原创 HCIA——DHCP+ACL+NAT学习
文章摘要: 本文主要介绍了三种网络协议:DHCP、ACL和NAT。DHCP协议用于动态分配IP地址,包含接口地址池和全局地址池两种配置方式。ACL协议用于访问控制,包括基本ACL和高级ACL的配置示例。NAT协议则用于公网和私网地址转换,解释了私有IP地址范围和NAT路由器的工作原理。三种协议均配有详细的命令行配置示例和拓扑图说明,涵盖了网络地址分配、流量控制和地址转换等核心网络功能。
2025-05-31 14:48:24
1046
原创 HCIA——STP生成树协议学习笔记
STP协议摘要(149字) STP协议用于解决以太网中的环路问题,防止广播风暴、MAC地址表震荡和重复数据帧。其选举过程包括:1)选根桥(BID最小者);2)选根端口(比较RPC、BID、PID);3)选指定端口。当主链路故障时,冗余链路自动激活。STP优化机制通过TCN BPDU通知拓扑变更,触发MAC表刷新。链路聚合技术(如手工负载分担和LACP)可将多条物理链路捆绑为逻辑链路,提高带宽和可靠性。配置时需确保两端参数一致,三层设备需将聚合口设为三层接口。
2025-05-29 15:22:17
895
原创 HCIA——VLAN学习笔记
VLAN(虚拟局域网)技术用于将大型局域网分割成多个较小的广播域,以解决广播风暴和信息安全问题。VLAN通过支持VLAN功能的以太网交换机实现,每个VLAN对应一个VID,同一VLAN内的设备可以通信,不同VLAN之间则不能。VLAN可以通过交换机、路由器或防火墙划分,支持基于接口、MAC地址和IP地址的划分方式。配置VLAN时,需创建VLAN并设置接口类型(Access、Trunk或Hybrid),通过PVID(端口默认VLAN ID)处理无标签数据帧。
2025-05-21 17:13:36
1035
原创 HCIA——OSPF协议学习笔记
OSPF(开放最短路径优先)是一种基于链路状态的路由协议,使用UDP进行通信,通过洪泛法交换链路信息,选择代价最小的路径。OSPF定义了五种报文和七种状态,连接过程包括邻居发现、主从选举、链路状态数据库同步等步骤,支持静态路由和动态路由,动态路由通过OSPF协议自动计算最优路径。
2025-05-19 09:54:07
1212
原创 机器学习——K-近邻(KNN)算法学习笔记
K-近邻算法(KNN)是一种基于距离的分类算法,通过计算样本与训练集中各点的距离,选择距离最近的K个点,根据这些点的类别进行投票,预测样本的类别。常用的距离度量包括欧氏距离、曼哈顿距离、切比雪夫距离和闵可夫斯基距离。K值的选择对模型性能有重要影响,较小的K值容易过拟合,较大的K值容易欠拟合,通常通过交叉验证选择最优K值。为了提高KNN算法的效率,可以使用kd树结构,减少距离计算的次数,将算法复杂度从O(DN^2)降低到O(Dlog(N))。Scikit-learn库提供了KNN算法的API,便于实现和应用。
2025-05-14 10:09:25
852
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅