A-柠檬可乐
#include<bits/stdc++.h>
#define endl '\n'
#define int long long
using namespace std;
int a,b,k;
void solve() {
cin>>a>>b>>k;
if(a>=k*b) cout<<"good"<<endl;
else cout<<"bad"<<endl;
}
signed main() {
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
int t=1;
// cin>>t;
while(t--) {
solve();
}
return 0;
}
B-左右互博
n堆石头
第i堆石头有ai个石子
博弈
操作:将一堆石子(x个)分成两堆,一堆是x的因数,剩下自成一堆
当某个人不能操作时,失败
一堆石子x可以分成1和x-1,那么就枚举每堆石子,可操作次数为ai-1,总操作次数如果为奇数,那么gui赢,否则sweet赢
#include<bits/stdc++.h>
#define endl '\n'
#define int long long
using namespace std;
const int N=2e5+10;
int a[N];
int n;
void solve() {
cin>>n;
for(int i=1;i<=n;i++) cin>>a[i];
int sum=0;
for(int i=1;i<=n;i++){
sum+=a[i]-1;
}
if(sum%2) cout<<"gui"<<endl;
else cout<<"sweet"<<endl;
}
signed main() {
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
int t=1;
// cin>>t;
while(t--) {
solve();
}
return 0;
}
C-冬眠
n * m的小写字母矩阵、
共有p天
每天操作:q次循环右移或者循环下移
问(x,y)是什么字符
数据比较小,考虑暴力
已知结果,倒推,
只关注(x,y),逆推,看(x,y)跑到哪个位置
#include<bits/stdc++.h>
#define endl '\n'
#define int long long
using namespace std;
typedef pair<int,int>PII;
const int N=110;
char s[N][N];
int n,m,x,y;
void solve() {
cin>>n>>m>>x>>y;
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
cin>>s[i][j];
}
}
int p,q;
cin>>p>>q;
vector<PII>ans;
for(int i=0;i<q;i++){
int op,z;
cin>>op>>z;
ans.push_back({op,z});
}
for(int i=0;i<p;i++){
for(int j=q-1;j>=0;j--){
int op=ans[j].first,z=ans[j].second;
if(op==1){//行
if(x==z){
y--;
if(y==0) y=m;
}
}
else{//列
if(y==z){
x--;
if(x==0) x=n;
}
}
}
}
// cout<<x<<' '<<y<<endl;
cout<<s[x][y]<<endl;
}
signed main() {
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
int t=1;
// cin>>t;
while(t--) {
solve();
}
return 0;
}
D-守恒
长度为n的数组a(数[1,2e5])
操作:选择两个元素,一个加1,一个减1,但是不能变成0
问数组最大公约数有几种不同的值
操作过后,和不变
先求和,为sum
所以本质上是将sum分解成n个大于1的数,然后问最大公因数有几种
特判,n为1时,答案为1
n大于等于2
首先1肯定是一种,只要第一个数放个1就行
分解质因数,比如223,依次枚举,如果后面所有数相乘大于等于n,那么就是一种答案
不对,应该直接求因数i,然后如果sum/i大于等于n,那么产生一种最大公因数
#include<bits/stdc++.h>
#define endl '\n'
#define int long long
using namespace std;
const int N=2e5+10;
int a[N];
int n;
void solve() {
cin>>n;
int sum=0;
for(int i=1;i<=n;i++) cin>>a[i],sum+=a[i];
if(n==1){
cout<<1<<endl;
return;
}
int ans=1;
for(int i=2;i<=sum/i;i++){
if(sum%i==0){
if(sum/i>=n) ans++;
int x=sum/i;
if(x!=i&&i>=n) ans++;
}
}
cout<<ans<<endl;
}
signed main() {
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
int t=1;
// cin>>t;
while(t--) {
solve();
}
return 0;
}
E-漂亮数组
长度为n的数组a
将数组a分成若干个数组,问最多得到几个漂亮数组
漂亮数组:存在一个总和是k的倍数的子数组
所有数对k取余
贪心,只要有一段区间有和为k的倍数的子数组,那么就断开
动态前缀和,一边遍历,一边看前面是否出现过sum,如果出现,说明以当前为右端点,有一个数组和为k的倍数,那么就断开,成为一组
#include<bits/stdc++.h>
#define endl '\n'
#define int long long
using namespace std;
const int N=2e5+10;
int a[N];
int n,k;
void solve() {
cin>>n>>k;
for(int i=1;i<=n;i++) cin>>a[i],a[i]%=k;
map<int,int>mp;
int sum=0;
mp[k]=1;
int ans=0;
for(int i=1;i<=n;i++){
sum=(sum+a[i])%k;
if(mp[sum]||sum==0){
sum=0;
mp.clear();
mp[k]=1;
ans++;
}
else mp[sum]=1;
}
cout<<ans<<endl;
}
signed main() {
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
int t=1;
// cin>>t;
while(t--) {
solve();
}
return 0;
}
G-数三角形(easy)
给定一个nm的,.矩阵
求出等腰三角形的数量
数据比较小
可以预先记录每行连续星号的区间
对于每个星号(x,y),以它为顶点,往左下方(x+1,y-1)和右下方(x+1,y+1)拓展,如果两个都为星号(分别记为l,r),说明有机会可以拓展下去,然后看预先记录的区间有没有包含此区间,如果包含了,说明[l,r]全是星号,那么产生一个等腰三角形
#include <bits/stdc++.h>
#define endl '\n'
#define int long long
using namespace std;
const int N = 3010;
char s[N][N];
int r[N][N];
int n, m;
void solve() {
cin >> n >> m;
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
cin >> s[i][j];
}
}
vector<vector<int>>ans(n + 1);
for (int i = 1; i <= n; i++) {
int l = 1;
bool ok = false;
for (int j = 1; j <= m; j++) {
if (s[i][j] == '*' && !ok) {
l = j;
ans[i].push_back(l);
ok = true;
} else if (s[i][j] == '.' && ok) {
r[i][l] = j - 1;
ok = false;
}
}
if (ok && s[i][m] == '*') {
r[i][l] = m;
}
}
// for(int i=1;i<=n;i++){
// for(auto v:ans[i]) cout<<v<<' '<<r[i][v]<<" ";
// cout<<endl;
// }
int res = 0;
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
if (s[i][j] == '.') continue;
int x = i, y = j, yy = j;
x++;
y--;
yy++;
while (x <= n && y >= 1 && yy <= m && s[x][y] == '*' && s[x][yy] == '*') {
int L = 0, R = (int)ans[x].size() - 1;
while (L < R) {
int mid = (L + R + 1) / 2;
if (ans[x][mid] <= y) L = mid;
else R = mid - 1;
}
if(r[x][ans[x][L]]>=yy&&ans[x][L]<=y) res++;
x++;
y--;
yy++;
}
}
}
cout << res << endl;
}
signed main() {
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
int t = 1;
// cin>>t;
while (t--) {
solve();
}
return 0;
}