Barcelonaforever
码龄2年
关注
提问 私信
  • 博客:5,454
    5,454
    总访问量
  • 3
    原创
  • 2,017,667
    排名
  • 39
    粉丝
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:浙江省
  • 加入CSDN时间: 2022-10-05
博客简介:

m0_74096414的博客

查看详细资料
个人成就
  • 获得50次点赞
  • 内容获得0次评论
  • 获得71次收藏
创作历程
  • 3篇
    2023年
成就勋章
兴趣领域 设置
  • Python
    python
创作活动更多

超级创作者激励计划

万元现金补贴,高额收益分成,专属VIP内容创作者流量扶持,等你加入!

去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

认识Bert模型

"""评估函数,用以评估数据集在神经网络下的精确度"""res = net(tokens_X) # 获得到预测结果sum_correct += (res.argmax(axis=1) == y).sum() # 累加预测正确的结果i += 8return sum_correct/len(comments_data) # 返回(总正确结果/所有样本),精确率"""训练bert_classifier分类器"""max_acc = 0.5 # 初始化模型最大精度为0.5。
原创
发布博客 2023.12.12 ·
944 阅读 ·
22 点赞 ·
0 评论 ·
19 收藏

transformer的具体应用:图像分类

在上面的结构图中可以看到,输入Encoder的最左侧部分添加了一个0*这个Token,这个就是额外添加的一个[class]token,单独用来处理类别信息,经过Encoder之后,需要单独将这个Token再提取出来,输入到MLP Head之中再输出分类结果。这一步的操作在论文中是直接采用切割的处理办法,但是在后面的代码实现中,采用了一种更巧妙的解决思路,就是利用一个卷积核大小为16x16,步距为16,卷积核个数为768的卷积层来进行实现。在Transformer中,位置编码的作用是为了记忆输入的语序信息。
原创
发布博客 2023.12.07 ·
2588 阅读 ·
21 点赞 ·
0 评论 ·
41 收藏

解析Bi-LSTM:双向长短时记忆网络的强大之处

后向的LSTMR依次输入“你”,“爱”,“我”得到三个向量{hR0,hR1,hR2}。最后将前向和后向的隐向量进行拼接得到{[hL0,hR2],[hL1,hR1],[hL2,hR0]},即{h0,h1,h2}。在更细粒度的分类时,如对于强程度的褒义、弱程度的褒义、中性、弱程度的贬义、强程度的贬义的五分类任务需要注意情感词、程度词、否定词之间的交互。举一个例子,“这个餐厅脏得不行,没有隔壁好”,这里的“不行”是对“脏”的程度的一种修饰,通过BiLSTM可以更好的捕捉双向的语义依赖。如句子“我不觉得他好”。
原创
发布博客 2023.11.29 ·
1922 阅读 ·
7 点赞 ·
0 评论 ·
11 收藏