山东大学软件学院2024-2025最优化方法期末考试(回忆版)

考试时间:2024年12月12日
授课老师:zp
考试科目:最优化方法

总分:100分
今年和21级的授课老师有变化,看之前的往年题都是只考了计算题,今年张老师加了判断题和填空题,所以一直不知道这两个题型会考什么。计算量超级大,两个小时的考试几乎所有人都做到最后,考完整个人都懵懵的...

一、判断题(10*1分)

1.两个不相交的集合的并一定不是凸集
2. 凸函数的定义域不一定是凸集
3.动态规划表格是二维的,且每次的计算是常数级,这个动态规划的时间复杂度是多项式时间
4.用分支定界法求解一个极大化的整数规划问题时,任何一个可行解的目标函数值是该问题目标函数值的下界
5.单纯性算法中利用最小比值法选转轴元的时候,如果能选的不止一个转轴元,则旋转后必然有一个基变量值为0
6.所有线性规划都有对偶规划
7.原始线性规划可行解无界,则其对偶规划无可行解
8.d1和d2关于A共轭,d2和d3关于A共轭,则d1和d3也关于A共轭
9.f(x)在每一点处的黑塞矩阵正定,则f(x)是凸函数
10.。。。实在想不起来了,尽力了(老师没讲动态规划,还以为不会考呢)

二、填空题(10空*2分)

1.f,g是凸函数,max{ f , g }是___函数?min{ f , g }是___函数?(凸函数,凹函数,非凸非凹函数)
2.线性规划中,B是A的一个子矩阵,若要选择B为作为基,则B应该满足___,若此时的基本解为基本可行解,应满足____
3.f(x+αd)关于α求导的结果___
4.原始线性规划有3个功能约束,4个变量约束,则对偶线性规划有___个功能约束,___个变量约束?
5.等式约束二次规划中的拉格朗日法求解,实际上是求______和_______组成的方程组。
还有一个空实在是想不起来了

三、计算题Ⅰ(3*10分)

1.用单纯形法解线性规划

2.用二阶段单纯形法解线性规划

3.用对偶单纯形法解线性规划
 

四、计算题Ⅱ(4*10分)

计算题其实和平时练的都差不多,但是感觉最优化的题本来就比较容易算错qaq

1.用最速下降法求解

2.用阻尼牛顿法求解(这两个题的目标函数是一样的,都是一次迭代就求到最优解了)

3.用K-T条件求解
(只有不等式约束)

4.用外点罚函数法求解
(既有等式约束又有不等式约束)

后记

张老师人超级好,从不考勤,一直为同学们考虑,教材就是自己编的书,课程内容很偏数学。考试的时候计算题的空有点小,学弟学妹们记得规划好空间,写到最后表格只能画的超级小。还有一定要做的快一点,计算量很大,考试时间是比较紧张的,容错率也比较低。至于判断题,由于不知道会考什么类型的,找我管院的朋友要了她们运筹学的判断题,真的撞上了几道原题,大家复习的时候可以找点运筹学的判断看看。祝学弟学妹们都A+!

希望做好事积德,老师多给点分吧求求了🙏

1.10出成绩了,张老师给分好高!!太爱了

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值