子集树算法文档

1.算法概述

子集树是一种 回溯算法,用于生成一个集合的所有子集。给定一个数组 arr,该算法递归地遍历所有可能的子集,并通过一个辅助数组 x 标记当前元素是否被选中。

2.算法特点

  • 时间复杂度:O(2n)O(2n)(因为一个包含 n 个元素的集合有 2n2n 个子集)。

  • 空间复杂度:O(n)O(n)(递归栈深度)。

  • 适用场景:需要枚举所有子集的问题,如组合、子集和、幂集等。

3.代码实现

#include <iostream>
#include <string>

using namespace std;
void func(int arr[], int i, int length,int x[])
{
    if (i == length)//递归终止条件:处理完所有元素
    {
        for (int j = 0; j < length; j++)
        {
            if (x[j] == 1)//如果当前元素被选中,则输出
                cout << arr[j] << " ";
        }
        cout << endl;
    }
    else
    {
        x[i] = 1;//选择当前节点
        func(arr, i + 1, length,x);//处理左子树
        x[i] = 0;//不选择当前节点
        func(arr, i + 1, length,x);//处理右子树
    }
}
int main()
{
    int arr[] = { 1,2,3 };
    int length = sizeof(arr) / sizeof(int);
    int x[3] = { 0 };//初始化数组为0
    func(arr, 0, length,x);
    return 0;
}

   在此列一道题目:在给出序列中,求所选元素和  与 未选元素和的最小差值是多少


#include <iostream>  
#include <cmath>    

using namespace std; 

// 定义全局变量
int arr[] = { 12, 6, 7, 11, 16, 3, 9 };  // 输入的数字数组
const int length = sizeof(arr) / sizeof(int);  // 计算数组长度

int x[length] = { 0 };   // 记录当前选择的元素(1表示选中,0表示未选中)
int sum = 0;           // 记录当前已选元素的和
int r = 0;             // 记录当前未选元素的和
int Min = 0x7FFFFFFF;  // 记录最小差值,初始设为最大整数值
int bestx[length] = { 0 };  // 记录最佳选择方案

// 回溯函数
void func(int i) {
    // 递归终止条件:已处理完所有元素
    if (i == length) {
        // 计算当前选择与未选择子集和的绝对差值
        int result = abs(sum - r);

        // 如果找到更小的差值,更新最优解
        if (result < Min) {
            Min = result;  // 更新最小差值
            // 保存当前最佳选择方案
            for (int j = 0; j < length; j++) {
                bestx[j] = x[j];
            }
        }
    }
    else {
        // 选择当前元素arr[i]的情况
        r -= arr[i];      // 从未选和中减去当前元素
        sum += arr[i];    // 将当前元素加到已选和
        x[i] = 1;         // 标记当前元素为已选
        func(i + 1);      // 递归处理下一个元素

        // 不选择当前元素arr[i]的情况
        sum -= arr[i];    // 从已选和中减去当前元素
        r += arr[i];      // 将当前元素加到未选和
        x[i] = 0;         // 标记当前元素为未选
        func(i + 1);      // 递归处理下一个元素
    }
}

int main() {
    // 计算数组所有元素的总和,初始化未选和r
    for (int v : arr) {
        r += v;
    }

    // 从第0个元素开始回溯搜索
    func(0);

    // 输出结果
    cout << "Selected: ";
    // 输出被选中的元素
    for (int i = 0; i < length; i++) {
        if (bestx[i]) {
            cout << arr[i] << " ";
        }
    }
    // 输出最小差值
    cout << "\nMin difference: " << Min << endl;

    return 0; 
}
 

继续列一道题:给出2n个整数,从里面挑选n个整数,使其让选择的整数的和  与未选择的整数的和的差值最小

#include <iostream> 
#include <cmath>     
#include <vector>   

// 定义全局变量
int arr[] = {12,6,7,11,16,3,8,9};           // 输入的数字数组
const int length = sizeof(arr)/sizeof(int); // 计算数组长度
std::vector<int> x;                         // 当前选择的元素集合(存储元素值)
std::vector<int> bestx;                     // 最佳选择的元素集合
int sum;                                    // 当前已选元素的和
int Left = length;                         // 剩余未处理的元素个数(初始为总长度)
int r;                                     // 当前未选元素的和
unsigned int Min = INT_MAX;               // 记录最小差值(初始为最大整数值)
int cnt;                                  // 记录递归调用次数(调试用)

// 回溯函数(i表示当前处理元素的索引)
void func(int i) {
    // 递归终止条件:已处理完所有元素
    if (i == length) {
        cnt++; // 递归次数统计
        
        // 检查是否恰好选中一半元素
        if (x.size() != length/2) return;
        
        // 计算当前差值
        int result = abs(sum - r);
        
        // 更新最优解
        if (result < Min) {
            Min = result;    // 更新最小差值
            bestx = x;       // 深拷贝当前选择路径
        }
        return;
    }
    // 未处理完所有元素时的递归操作
    else {
        Left--; // 减少剩余未处理元素数量
        
        // 分支1:选择当前元素(需满足选择数量未过半)
        if (x.size() < length/2) { // 剪枝条件1:已选数量不能超过半数
            // 选择当前元素
            sum += arr[i];   // 更新已选和
            r -= arr[i];     // 更新未选和
            x.push_back(arr[i]); // 记录选择路径
            
            func(i+1); // 递归处理下一个元素
            
            // 回溯操作
            sum -= arr[i];   // 恢复已选和
            r += arr[i];     // 恢复未选和
            x.pop_back();    // 移除当前选择
        }
        
        // 分支2:不选择当前元素(需满足剩余元素足够凑够半数)
        if (x.size() + Left >= length/2) { // 剪枝条件2:剩余元素足够完成选择
            func(i+1); // 递归处理下一个元素
        }
        
        Left++; // 恢复剩余未处理元素数量
    }
}

int main() {
    // 初始化未选和(总和)
    for(int num : arr) {
        r += num;
    }
    
    func(0); // 从第0个元素开始回溯
    
    // 输出结果
    std::cout << "Selected elements: ";
    for(int v : bestx) {
        std::cout << v << " ";
    }
    std::cout << "\nMinimum difference: " << Min << std::endl;
    std::cout << "Total recursions: " << cnt << std::endl; 
    
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

LMX-2015

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值