大数据平台实验三:MapReduce操作实践;讨厌的数组溢出是什么鬼?

本文概述了MapReduce的基本原理,包括数据拆分、并行处理和结果合并,重点介绍了WordCount示例、自定义Hadoop数据类型以及如何实现多个MapReduce任务的串联。详细讲解了Mapper、Reducer的代码实现和配置要点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.MapReduce基本知识的总结

MapReduc的相关知识可以简单分为以下几点:

1.1拆解数据(即Map):

将大规模数据分割成小块。

每个小块都有自己的任务。

这些任务是简单的处理,比如筛选、排序或计数。

1.2处理过程:

各个小块同时进行处理,互不干扰。

并行处理使得整体速度更快。

每个小块处理完后生成中间结果。

1.3组合结果(Reduce):

将各个小块的中间结果收集起来。

将这些结果按照某种方式组合起来。

最终得到一个完整的处理结果。

2.MapReduce的操作实践

2.1基于MapReduce的WordCount实践

0.首先,本文默认环境为Linux的Ubuntu操作环境且已经安装、配置好了hadooop、Maven、idea、jdk等前置配置。

1.编写对应代码,复制导入core-site.xmlhdfs-site.xml两文件(在安装的etc/hadoop路径下):

2.pom文件的配置:

如果你的idea,Maven配置是正常的那么在创建项目时构建系统选择Maven后文件夹会自动生成pom文件,但其中配置需要自己调整:

pom代码实现:
(注意,版本号是hadoop对应版本号,我的是2.10.0)
<?xml version="1.0" encoding="UTF-8"?>
<!-- Maven项目描述文件 -->
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <!-- 模型版本 -->
    <modelVersion>4.0.0<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值