代码随想录算法训练营Day31 | 56. 合并区间 738.单调递增的数字

56. 合并区间

问题描述:

以数组 intervals 表示若干个区间的集合,其中单个区间为 intervals[i] = [starti, endi] 。请你合并所有重叠的区间,并返回 一个不重叠的区间数组,该数组需恰好覆盖输入中的所有区间 。

解决方式:

class Solution {
    public int[][] merge(int[][] intervals) {
        Arrays.sort(intervals,(a,b)->Integer.compare(a[0],b[0]));
        List<int[]> marge = new ArrayList<>();
        //当前区间
        int[] currentInterval = intervals[0];
        marge.add(currentInterval);
        //始终比较结果集合中最后一个区间与当前遍历到的区间
        for(int[] interval : intervals){
            int currentEnd = currentInterval[1];
            int nextStart = interval[0];
            int nextEnd = interval[1];
            if(currentEnd >= nextStart){
                currentInterval[1] = Math.max(currentEnd,nextEnd);
            }else{
                currentInterval = interval;
                marge.add(currentInterval);
            }
        }
        return marge.toArray(new int[0][]);


    }
}

738.单调递增的数字

问题描述:

当且仅当每个相邻位数上的数字 x 和 y 满足 x <= y 时,我们称这个整数是单调递增的。

给定一个整数 n ,返回 小于或等于 n 的最大数字,且数字呈 单调递增 。

解决方式:

class Solution {
    public int monotoneIncreasingDigits(int n) {
        char[] digits = String.valueOf(n).toCharArray();
        int mark = digits.length; // 标记需要置为'9'的起始位置
        
        // 从右向左扫描
        for (int i = digits.length - 1; i > 0; i--) {
            if (digits[i] < digits[i - 1]) {
                digits[i - 1]--;
                mark = i; // 只更新最左边的mark
            }
        }
        
        // 将mark之后的所有位都置为'9'
        for (int i = mark; i < digits.length; i++) {
            digits[i] = '9';
        }
        
        return Integer.parseInt(new String(digits));
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值