本人是个刚接触算法的小菜鸡 这也是我的第一个博客 这道题在一个大佬的指导下顺利完成 太高兴了 所以发一个博客
问题 J: 矩形覆盖
(这里所有的矩形,就相当于一个长方形)学校门口路面上出现了一个矩形大洞。现在学校找来了一些矩形钢板,想要盖住这个大洞。可是,他们又想不出一个既安全又节省的覆盖方案,所以,找到了参加程序设计竞赛的你,帮忙设计一个覆盖方案。从安全角度考虑,钢板的放置必须符合如下所有原则:
1.钢板之间可以相互叠加。
2.钢板必须完全覆盖大洞。
3.你可以任意旋转每块钢板,但是覆盖过程中,钢板的边必须与大洞的边平行。
4.每块钢板的4个角必须严格落在大洞外(钢板任何一个角和洞口的角重合,或者在大洞内部,这块钢板就会不稳定)如下图所示几种放置方法,黑色表示大洞区域,红色表示钢板:
图A和B中,都有钢板的点在大洞内部,不能这样放置。图C和D中,钢板4个角都在大洞外,是稳定安全的。图E中,也是不稳定的,就算钢板的角在其他钢板上,也要落在大洞外。请问能否在安全的前提下,用这些钢板盖住这个大洞,若可以,使用最少的钢板数量进行覆盖。请你帮忙计算一下!
输入
第一行两个整数R和C,表示大洞的长和宽。
第二行一个整数N,表示矩形钢板数量
接下来N行,每行两个整数w[i]和h[i],表示第i块钢板的长和宽。
输出
要覆盖大洞最少使用钢板的数量,若无法覆盖,输出-1.
样例输入 Copy
【样例1】 5 5 3 8 2 8 3 8 4 【样例2】 10 10 4 6 6 6 6 6 6 6 6
样例输出 Copy
【样例1】 2 【样例2】 -1
提示
样例1解释:任意选择两个钢板就可以盖住这个大洞。例如用最小的两个(8,2)和(8,3)钢板刚好覆盖如下图:
样例2解释:无法覆盖,任何一个钢板都无法放上去。无法使钢板的四个角都落在大洞外。
30%的数据,1<=R,C<=1000,1<=w[i]<=1000,h[i]=1。
70%的数据,n<=20,1<=R,C<=1000,1<=w[i],h[i]<=1000。
100%的数据1<=n<=50,1<=R,C,w[i],h[i]<=1000000000。
代码附上 思路应该还算清晰吧
#include<bits/stdc++.h>
using namespace std;
typedef pair<int,int>PII;
PII L[55];
PII D[55],Z[55];
int main()
{
int a,b;
cin>>a>>b;
int n,t1=0,t2=0;
cin>>n;
if(b>a)swap(a,b);
for(int i=0;i<n;i++){
int x,y;
cin>>x>>y;
if(y>x)swap(y,x);
Z[i].first=x;
Z[i].second=y;
}//以宽来覆盖
for(int i=0;i<n;i++){
if(Z[i].second>b){
D[t1].first=Z[i].first;
D[t1].second=Z[i].second;
t1++;
}else if(Z[i].first>b){
D[t1].first=Z[i].second;
D[t1].second=Z[i].first;
t1++;
}
}
for(int i=0;i<n;i++){
if(Z[i].second>a){
L[t2].first=Z[i].first;
L[t2].second=Z[i].second;
t2++;
}else if(Z[i].first>a){
L[t2].first=Z[i].second;
L[t2].second=Z[i].first;
t2++;
}
}
sort(L,L+t2);
sort(D,D+t1);
t1--,t2--;
int ans1=0,ans2=0;
while(t1>=0&&a>0){
a-=D[t1].first;
ans1++;
t1--;
}
while(t2>=0&&b>0){
b-=L[t2].first;
ans2++;
t2--;
}
if(a>0&&b>0){
cout<<"-1";
}else if(a<=0&&b>0){
cout<<ans1;
}else if(a>0&&b<=0){
cout<<ans2;
}else if(a<=0&&b<=0){
cout<<min(ans1,ans2);
}
return 0;
}