@[TOC](目录:)
前言
这篇文章是基于作者所学的计算机基础课程,并查阅了相关资料后整理而成。相信各位读者阅读后,对数制会有更多的了解。
正文
计算机是进行信息处理的工具,这些信息通常包括数值、文本字符、图形、图像、声音、动画和视频等。在计算机系统中,这些数据都要转化为二进制形式,也就是要进行二进制编码。由计算机直接储存和处理的数也只能是二进制形式。
1.1 计算机采用二进制的原因
物理元器件性能
计算机普遍采用具有两种不同稳定状态的元器件,因此,用“0”和“1”可以方便的表示其状态,且数据传送不易出现差错。
运算简单
与十进制相比,二进制的运算规则更为简单,如求和只有3种形式:
0+0=0 0+1=1 1+1=10
而减法和除法均可采用补码和移位的操作实现,简化运算器的结构,提高系统的可靠性。
可进行逻辑运算
计算机采用二进制数的优点是,可以使用数学上的布尔代数进行逻辑运算,其逻辑运算已成为计算机电路设计的数学基础,这是十进制所难以实现的。
1.2 数制及常用数制间的对应关系
在一种数制中,只能使用一组 固定的数字符号来表示数值的大小。通常,把某数制所使用数字符号的个数称为该数制的 基数,某个位置上1所代表的数值大小称为 位权(简称权)。对于任何N进制,都有一套统一的运算规则(即 “逢N进一”的原则)
常用数制有二进制、十进制还有十六进制。
表 1-1 常用进制数的表示

1.3 不同进制之间的转换
一:其它进制转换为十进制
方法是:将其它进制按权位展开求和,就得到相应的十进制数。
为区分不同进制表示的数,除了在数的末尾用该数制的基数作为下角外,还可以在其后加大写字母。其中,B(binary)表示二进制,D(decimal)表示十进制,字母H(hexadecimal)表示十六进制。
例: N=(10110.101)B=1 2^4+02^3+1 2^2+12^1+0 2^0+12^-1+0 2^-2+12^-3
=16+4+2+0.5+0.125 =(22.625)D
二:将十进制转换成其它进制
方法是: 先将该数分为整数部分和小数部分分别进行转换,然后再拼接起来。
整数部分:
“除基数取余法”,要转换的数除以新的进制的基数,余数作为新进制的最低位;
所得商再除以基数,余数作为新进制的次低位;继续上一步,直到最后的商为零,
这时的余数就是新进制的最高位.(类似于高等代数中的辗转相除法)
小数部分:
“乘基数取整”,要转换数的小数部分乘以新进制的基数,得到的整数部分作为新进制小数部分的最高位
所得小数部分再乘以新进制的基数,把整数部分作为新进制小数部分的次高位;
继续上一步,直到小数部分变成零为止。
三:二进制与八进制、十六进制的相互转换
方法:它们之间满足23和24的关系,因此把要转换的二进制从低位到高位每3位或4位一组,高位不足时在有效位前面添“0”(整数部分在最左边补0,小数部分在最右边补0),然后把每组二进制数转换成八进制或十六进制即可。
而八进制、十六进制转换为二进制时,把上面的过程逆过来即可。
例:1010101011.011011B= 0010 1010 1011 .0110 1100 B=2AB.6CH
3AC.1BH=0011 1010 1100.0001 1011B=1110101100.00011011B
数制的相关知识我们就介绍到这啦,如发现有不足的地方,或者有想法补充的朋友,欢迎在评论区留言哦。下一篇我们将会介绍数据存储单元和内存地址,关于二进制的原码、补码和反码运算也会在后面的文章中详细的为大家讲解。感兴趣的朋友可以关注一下作者,更多优质好文将持续为您推送!