代码随想录算法训练营第十七天|654.最大二叉树、617.合并二叉树、700.二叉搜索树中的搜索、98.验证二叉搜索树

654.最大二叉树

题目链接:654. 最大二叉树 - 力扣(LeetCode)

给定一个不重复的整数数组 nums 。返回 nums 构建的 最大二叉树 。

解题思路:

首先,找到数组中的最大值,这个值将会是二叉树的根节点。然后,使用最大值左边的数组来递归构建左子树,使用最大值右边的数组来递归构建右子树。

class Solution {
public:
    // 获取最大值的索引
    int getMaxIndex(const vector<int>& nums) {
        int maxIndex = 0;
        for (int i = 1; i < nums.size(); ++i) {
            if (nums[i] > nums[maxIndex]) {
                maxIndex = i;
            }
        }
        return maxIndex;
    }
    TreeNode* constructMaximumBinaryTree(vector<int>& nums) {
        if (nums.size() == 0)
            return nullptr;
        // 获取最大值的索引
        int maxIndex = getMaxIndex(nums);
        TreeNode* root = new TreeNode(nums[maxIndex]);

        // 分割左右子树
        vector<int> leftNodes(nums.begin(), nums.begin() + maxIndex);
        vector<int> rightNodes(nums.begin() + maxIndex + 1, nums.end());

        // 递归构建左右子树
        root->left = constructMaximumBinaryTree(leftNodes);
        root->right = constructMaximumBinaryTree(rightNodes);
        return root;
    }
};

以上代码效率不高,每次还要切割的时候每次都要定义新的vector(也就是数组)。优化思路,就是每次分隔不用定义新的数组,而是通过下标索引直接在原数组上操作。

优化后的代码:

class Solution {
public:
    // 获取最大值的索引
    int getMaxIndex(const vector<int>& nums) {
        int maxIndex = 0;
        for (int i = 1; i < nums.size(); ++i) {
            if (nums[i] > nums[maxIndex]) {
                maxIndex = i;
            }
        }
        return maxIndex;
    }

    // 构建最大二叉树
    TreeNode* constructTree(vector<int>& nums, int start, int end) {
        if (start > end)
            return nullptr;

        // 获取最大值的索引
        int maxIndex = getMaxIndex(
            vector<int>(nums.begin() + start, nums.begin() + end + 1));
        TreeNode* root = new TreeNode(nums[start + maxIndex]);

        // 递归构建左右子树
        root->left =
            constructTree(nums, start, start + maxIndex - 1);
        root->right =
            constructTree(nums, start + maxIndex + 1, end);

        return root;
    }
    TreeNode* constructMaximumBinaryTree(vector<int>& nums) {
        return constructTree(nums,0,nums.size()-1);
    }
};

注意类似用数组构造二叉树的题目,每次分隔尽量不要定义新的数组,而是通过下标索引直接在原数组上操作,这样可以节约时间和空间上的开销。

617.合并二叉树

题目链接:617. 合并二叉树 - 力扣(LeetCode)

给你两棵二叉树: root1 和 root2 。合并的规则是:如果两个节点重叠,那么将这两个节点的值相加作为合并后节点的新值;否则,不为 null 的节点将直接作为新二叉树的节点。返回合并后的二叉树。

解题思路: 递归遍历两棵二叉树

class Solution {
public:
    TreeNode* mergeTrees(TreeNode* t1, TreeNode* t2) {
        if (t1 == NULL) return t2; // 如果t1为空,合并之后就应该是t2
        if (t2 == NULL) return t1; // 如果t2为空,合并之后就应该是t1
        // 修改了t1的数值和结构
        t1->val += t2->val;                             // 中
        t1->left = mergeTrees(t1->left, t2->left);      // 左
        t1->right = mergeTrees(t1->right, t2->right);   // 右
        return t1;
    }
};

700.二叉搜索树中的搜索

题目链接:700. 二叉搜索树中的搜索 - 力扣(LeetCode)

给定二叉搜索树(BST)的根节点 root 和一个整数值 val。你需要在 BST 中找到节点值等于 val 的节点。 返回以该节点为根的子树。 如果节点不存在,则返回 null 。

解题思路:

利用二叉树的性质,使用迭代法比较简单。借此题练个手,练习递归法。

递归法

class Solution {
public:
    TreeNode* searchBST(TreeNode* root, int val) {
        if (root == NULL || root->val == val) return root;
        if (root->val > val) return searchBST(root->left, val);
        if (root->val < val) return searchBST(root->right, val);
        return NULL;
    }
};

迭代法

class Solution {
public:
    TreeNode* searchBST(TreeNode* root, int val) {
        while (root != NULL) {
            if (root->val > val) root = root->left;
            else if (root->val < val) root = root->right;
            else return root;
        }
        return NULL;
    }
};

98.验证二叉搜索树

题目链接:98. 验证二叉搜索树 - 力扣(LeetCode)

给你一个二叉树的根节点 root ,判断其是否是一个有效的二叉搜索树。

解题思路:

要知道中序遍历下,输出的二叉搜索树节点的数值是有序序列。

有了这个特性,验证二叉搜索树,就相当于变成了判断一个序列是不是递增的了。

易错误区:

不能单纯的比较左节点小于中间节点,右节点大于中间节点就完事了。我们要比较的是 左子树所有节点小于中间节点,右子树所有节点大于中间节点

节点10大于左节点5,小于右节点15,但右子树里出现了一个6 这就不符合了! 

class Solution {
private:
    vector<int> vec;
    void traversal(TreeNode* root) {
        if (root == NULL) return;
        traversal(root->left);
        vec.push_back(root->val); // 将二叉搜索树转换为有序数组
        traversal(root->right);
    }
public:
    bool isValidBST(TreeNode* root) {
        vec.clear(); // 不加这句在leetcode上也可以过,但最好加上
        traversal(root);
        for (int i = 1; i < vec.size(); i++) {
            // 注意要小于等于,搜索树里不能有相同元素
            if (vec[i] <= vec[i - 1]) return false;
        }
        return true;
    }
};

以上代码中,我们把二叉树转变为数组来判断,是最直观的,但其实不用转变成数组,可以在递归遍历的过程中直接判断是否有序。

class Solution {
public:
    TreeNode* pre = NULL; // 用来记录前一个节点
    bool isValidBST(TreeNode* root) {
        if (root == NULL) return true;
        bool left = isValidBST(root->left);

        if (pre != NULL && pre->val >= root->val) return false;
        pre = root; // 记录前一个节点

        bool right = isValidBST(root->right);
        return left && right;
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值