博主是菜鸡啦,代码仅供参考,只确定能过样例,嘻嘻~
第一题,填空题
问题描述
请找到一个大于 2022 的最小数,这个数转换成十六进制之后,所有的数位(不含前导 0)都为字母(A 到 F)。
请将这个数的十进制形式作为答案提交。
答案提交
这是一道结果填空的题,你只需要算出结果后提交即可。本题的结果为一个整数,在提交答案时只填写这个整数,填写多余的内容将无法得分。
#include<iostream>
using namespace std;
int main()
{
for(int i=2022;;i++)
{
int ans=i;
int flag=0;
while(ans)
{
int temp=ans%16;
if(temp>9&&temp<16)//要每一位都满足才行
{
}else{
flag=1;
break; //不满足就退出了
}
ans/=16;
}
if(!flag)
{
cout<<i<<endl;
return 0;
}
}
return 0;
}
第二题,填空题
问题描述
在 Excel 中,列的名称使用英文字母的组合。前 26 列用一个字母,依次为 A 到 Z,接下来 26*26 列使用两个字母的组合,依次为 AA 到 ZZ。
请问第 2022 列的名称是什么?
答案提交
这是一道结果填空的题,你只需要算出结果后提交即可。本题的结果为一个由大写字母组成的字符串,在提交答案时只填写这个字符串,填写多余的内容将无法得分。
口算
2022 % 26 = 20 == T
2022 /= 26 == 77
77 % 26 == 25 == Y
77 /= 26 == 2
2 == B
答案:BYT
第三题,填空题
问题描述
对于一个日期,我们可以计算出年份的各个数位上的数字之和,也可以分别计算月和日的各位数字之和。请问从 1900 年 1 月 1 日至 9999 年 12 月 31 日,总共有多少天,年份的数位数字之和等于月的数位数字之和加日的数位数字之和。
例如,2022年11月13日满足要求,因为 2+0+2+2=(1+1)+(1+3) 。
请提交满足条件的日期的总数量。
答案提交
这是一道结果填空的题,你只需要算出结果后提交即可。本题的结果为一个整数,在提交答案时只填写这个整数,填写多余的内容将无法得分。
这题最重要的点:1,3,5,7,8,10,12月永远31天,4,6,9,11月有30天。2月平年28天闰年29天
#include<iostream>
#include<vector>
using namespace std;
//1,3,5,7,8,10,12月永远31天,4,6,9,11月有30天。2月平年28天闰年29天
int isrun(int n)
{
if((n%4==0&&n%100!=0)||n%400==0)
{
return 1;
}else return 0;
}
int get(int x)
{
int sum=0;
while(x)
{
sum+=x%10;
x/=10;
}
return sum;
}
int main()
{
int month[]={0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
int i;
int cnt=0;
for(i=1900;i<10000;i++)
{
if(isrun(i)) month[2]=29;
else month[2]=28;
int is=get(i);
for(int j=1;j<=12;j++)
{
for(int k=1;k<=month[j];k++)
{
int temp=get(j)+get(k);
if(temp==is) cnt++;
}
}
}
cout<<cnt;
return 0;
}
第四题,暴力
问题描述
小蓝有 30 个数,分别为:99, 22, 51, 63, 72, 61, 20, 88, 40, 21, 63, 30, 11, 18, 99, 12, 93, 16, 7, 53, 64, 9, 28, 84, 34, 96, 52, 82, 51, 77 。
小蓝可以在这些数中取出两个序号不同的数,共有 30*29/2=435 种取法。
请问这 435 种取法中,有多少种取法取出的两个数的乘积大于等于 2022 。
答案提交
这是一道结果填空的题,你只需要算出结果后提交即可。本题的结果为一个整数,在提交答案时只填写这个整数,填写多余的内容将无法得分。
#include<iostream>
#include<vector>
using namespace std;
int main()
{
int a[]={99, 22, 51, 63, 72, 61, 20,
88, 40, 21, 63, 30, 11, 18, 99, 12,
93, 16, 7, 53, 64, 9, 28, 84, 34,
96, 52, 82, 51, 77};
int cnt=0;
for(int i=0;i<30;i++)
{
for(int j=i+1;j<30;j++)
{
if(a[i]*a[j]>=2022)
{
cnt++;
}
}
}
cout<<cnt;
return 0;
}
第五题,dfs
问题描述
小蓝有一个 30 行 60 列的数字矩阵,矩阵中的每个数都是 0 或 1 。
110010000011111110101001001001101010111011011011101001111110
010000000001010001101100000010010110001111100010101100011110
001011101000100011111111111010000010010101010111001000010100
101100001101011101101011011001000110111111010000000110110000
010101100100010000111000100111100110001110111101010011001011
010011011010011110111101111001001001010111110001101000100011
101001011000110100001101011000000110110110100100110111101011
101111000000101000111001100010110000100110001001000101011001
001110111010001011110000001111100001010101001110011010101110
001010101000110001011111001010111111100110000011011111101010
011111100011001110100101001011110011000101011000100111001011
011010001101011110011011111010111110010100101000110111010110
001110000111100100101110001011101010001100010111110111011011
111100001000001100010110101100111001001111100100110000001101
001110010000000111011110000011000010101000111000000110101101
100100011101011111001101001010011111110010111101000010000111
110010100110101100001101111101010011000110101100000110001010
110101101100001110000100010001001010100010110100100001000011
100100000100001101010101001101000101101000000101111110001010
101101011010101000111110110000110100000010011111111100110010
101111000100000100011000010001011111001010010001010110001010
001010001110101010000100010011101001010101101101010111100101
001111110000101100010111111100000100101010000001011101100001
101011110010000010010110000100001010011111100011011000110010
011110010100011101100101111101000001011100001011010001110011
000101000101000010010010110111000010101111001101100110011100
100011100110011111000110011001111100001110110111001001000111
111011000110001000110111011001011110010010010110101000011111
011110011110110110011011001011010000100100101010110000010011
010011110011100101010101111010001001001111101111101110011101
如果从一个标为 1 的位置可以通过上下左右走到另一个标为 1 的位置,则称两个位置连通。与某一个标为 1 的位置连通的所有位置(包括自己)组成一个连通分块。
请问矩阵中最大的连通分块有多大?
答案提交
这是一道结果填空的题,你只需要算出结果后提交即可。本题的结果为一个整数,在提交答案时只填写这个整数,填写多余的内容将无法得分。
这题概括一下就是求最大连通子集的个数。
#include <iostream>
#include <cstring>
#include <algorithm>
#include <cstdio>
using namespace std;
const int N = 1e2 + 10;
int dx[4] = {-1, 0, 1, 0}, dy[4] = {0, 1, 0, -1};
int n = 30, m = 60;
char g[N][N];
int dfs(int x, int y)
{
if (g[x][y] == '0')
return 0;
g[x][y] = '0';
int res = 1;
for (int i = 0; i < 4; ++ i )
{
int tx = x + dx[i], ty = y + dy[i];
if (tx < 0 || ty < 0 || tx >= n || ty >= m)
continue;
res += dfs(tx, ty);
}
return res;
}
int main()
{
for (int i = 0; i < n; ++ i )
cin >> g[i];
int res = 0;
for (int i = 0; i < n; ++ i )
for (int j = 0; j < m; ++ j )
if (g[i][j] == '1')
res = max(res, dfs(i, j));
cout << res << endl;
return 0;
}
第六题,顺还队列的思想
问题描述
给定一天是一周中的哪天,请问 n 天后是一周中的哪天?
输入格式
输入第一行包含一个整数 w,表示给定的天是一周中的哪天,w 为 1 到 6 分别表示周一到周六,w 为 7 表示周日。
第二行包含一个整数 n。
输出格式
输出一行包含一个整数,表示 n 天后是一周中的哪天,1 到 6 分别表示周一到周六,7 表示周日。
样例输入
6
10
样例输出
2
评测用例规模与约定
对于所有评测用例,1 <= n <= 1000000。
#include<iostream>
#include<vector>
using namespace std;
int main()
{
long long d;//过了n天
int orig;//原始星期
scanf("%d%lld",&orig,&d);
int day=d%7;
int h=(orig+day)%7;
if(h==0) cout<<h+1;//刚开始忘了h为0要加1,细节问题要注意
cout<<h;
return 0;
}
第七题,暴力
问题描述
小蓝负责一块区域的信号塔安装,整块区域是一个长方形区域,建立坐标轴后,西南角坐标为 (0, 0), 东南角坐标为 (W, 0), 西北角坐标为 (0, H), 东北角坐标为 (W, H)。其中 W, H 都是整数。
他在 n 个位置设置了信号塔,每个信号塔可以覆盖以自己为圆心,半径为 R 的圆形(包括边缘)。
为了对信号覆盖的情况进行检查,小蓝打算在区域内的所有横纵坐标为整数的点进行测试,检查信号状态。其中横坐标范围为 0 到 W,纵坐标范围为 0 到 H,总共测试 (W+1) * (H+1) 个点。
给定信号塔的位置,请问这 (W+1)*(H+1) 个点中有多少个点被信号覆盖。
输入格式
输入第一行包含四个整数 W, H, n, R,相邻整数之间使用一个空格分隔。
接下来 n 行,每行包含两个整数 x, y,表示一个信号塔的坐标。信号塔可能重合,表示两个信号发射器装在了同一个位置。
输出格式
输出一行包含一个整数,表示答案。
样例输入
10 10 2 5
0 0
7 0
样例输出
57
评测用例规模与约定
对于所有评测用例,1 <= W, H <= 100,1 <= n <= 100, 1 <= R <= 100, 0 <= x <= W, 0 <= y <= H。
#include<iostream>
#include<vector>
#include<stdlib.h>
#include<cmath>
using namespace std;
typedef int length;
typedef int width;
int main()
{
int i=0; int j=0;
length w; width H;
int n,R;
scanf("%d%d%d%d",&w,&H,&n,&R);//n组信号塔,R为检测半径
//最后输出多少个点被覆盖
int a[110][110]={0};
int cnt=0;
int x,y;
while(n--)
{
cin>>x>>y;
a[x][y]=1;
for(i=0;i<=w;i++)
{
for(j=0;j<=H;j++)
{
if((i-x)*(i-x)+(j-y)*(j-y)<=pow(R,2))
{
a[i][j]=1;
}
}
}
}
for(i=0;i<=w;i++)
{
for(j=0;j<=H;j++)
{
if(a[i][j]==1)
{
cnt++;
}
}
}
cout<<cnt;
return 0;
}
第八题,暴力
问题描述
小蓝有一个 n * m 大小的矩形水域,小蓝将这个水域划分为 n 行 m 列,行数从 1 到 n 标号,列数从 1 到 m 标号。每行和每列的宽度都是单位 1 。
现在,这个水域长满了水草,小蓝要清理水草。
每次,小蓝可以清理一块矩形的区域,从第 r1 行(含)到第 r2 行(含)的第 c1 列(含)到 c2 列(含)。
经过一段时间清理后,请问还有多少地方没有被清理过。
输入格式
输入第一行包含两个整数 n, m,用一个空格分隔。
第二行包含一个整数 t ,表示清理的次数。
接下来 t 行,每行四个整数 r1, c1, r2, c2,相邻整数之间用一个空格分隔,表示一次清理。请注意输入的顺序。
输出格式
输出一行包含一个整数,表示没有被清理过的面积。
样例输入
2 3
2
1 1 1 3
1 2 2 2
样例输出
2
样例输入
30 20
2
5 5 10 15
6 7 15 9
样例输出
519
评测用例规模与约定
对于所有评测用例,1 <= r1 <= r2 <= n <= 100, 1 <= c1 <= c2 <= m <= 100, 0 <= t <= 100。
#include<iostream>
#include<vector>
#include<stdlib.h>
#include<cmath>
using namespace std;
int main()
{
int n,m,t;
cin>>n>>m>>t;
int r1,c1,r2,c2;
int a[110][110]={0};
int i,j;
while(t--)
{
cin>>r1>>c1>>r2>>c2;
for(i=r1;i<=r2;i++)
{
for(j=c1;j<=c2;j++)
{
a[i][j]=1;
}
}
}
int sum=0;
for(i=1;i<=n;i++)
{
for(j=1;j<=m;j++)
{
if(!a[i][j])
{
sum++;
}
}
}
cout<<sum<<endl;
return 0;
}
第九题,dfs
问题描述
小蓝准备在一个空旷的场地里面滑行,这个场地的高度不一,小蓝用一个 n 行 m 列的矩阵来表示场地,矩阵中的数值表示场地的高度。
如果小蓝在某个位置,而他上、下、左、右中有一个位置的高度(严格)低于当前的高度,小蓝就可以滑过去,滑动距离为 1 。
如果小蓝在某个位置,而他上、下、左、右中所有位置的高度都大于等于当前的高度,小蓝的滑行就结束了。
小蓝不能滑出矩阵所表示的场地。
小蓝可以任意选择一个位置开始滑行,请问小蓝最多能滑行多远距离。
输入格式
输入第一行包含两个整数 n, m,用一个空格分隔。
接下来 n 行,每行包含 m 个整数,相邻整数之间用一个空格分隔,依次表示每个位置的高度。
输出格式
输出一行包含一个整数,表示答案。
样例输入
4 5
1 4 6 3 1
11 8 7 3 1
9 4 5 2 1
1 3 2 2 1
样例输出
7
样例说明
滑行的位置一次为 (2, 1), (2, 2), (2, 3), (3, 3), (3, 2), (4, 2), (4, 3)。
评测用例规模与约定
对于 30% 评测用例,1 <= n <= 20,1 <= m <= 20,0 <= 高度 <= 100。
对于所有评测用例,1 <= n <= 100,1 <= m <= 100,0 <= 高度 <= 10000。
#include<bits/stdc++.h>
using namespace std;
const int N=110;
int n,m;//n行m列的数组
int high[N][N];//保存高度
int dx[]={-1,0,1,0};
int dy[]={0,1,0,-1};
int res=-1;
void dfs(int x,int y,int cnt)//对每一个位置进行遍历
{
res=max(res,cnt);
for(int i=0;i<4;i++)//遍历四个方向
{
int a=x+dx[i]; int b=y+dy[i];
if(a<0||a>n||b<0||b>m) continue;//超出场地范围,剪枝
if(high[a][b]<high[x][y])
{
dfs(a,b,cnt+1);
}else{
continue;
}
}
}
int main()
{
cin>>n>>m;
for(int i=0;i<n;i++)
{
for(int j=0;j<m;j++)
{
cin>>high[i][j];
}
}
for(int i=0;i<n;i++)
{
for(int j=0;j<m;j++)
{
dfs(i,j,0);
}
}
cout<<res;
return 0;
}
学了一点dfs,样例能过,自己写了几个情况也是对的,不知道能不能AC。
(话说有没有哪能评测……)
第十题,(属于看懂题就会做的。。
问题描述
小蓝有一个序列 a[1], a[2], ..., a[n]。
给定一个正整数 k,请问对于每一个 1 到 n 之间的序号 i,a[i-k], a[i-k+1], ..., a[i+k] 这 2k+1 个数中的最小值是多少?当某个下标超过 1 到 n 的范围时,数不存在,求最小值时只取存在的那些值。
输入格式
输入的第一行包含一整数 n。
第二行包含 n 个整数,分别表示 a[1], a[2], ..., a[n]。
第三行包含一个整数 k 。
输出格式
输出一行,包含 n 个整数,分别表示对于每个序号求得的最小值。
样例输入
5
5 2 7 4 3
1
样例输出
2 2 2 3 3
评测用例规模与约定
对于 30% 的评测用例,1 <= n <= 1000,1 <= a[i] <= 1000。
对于 50% 的评测用例,1 <= n <= 10000,1 <= a[i] <= 10000。
对于所有评测用例,1 <= n <= 1000000,1 <= a[i] <= 1000000。
#include<iostream>
#include<vector>
#include<stdlib.h>
#include<cmath>
using namespace std;
long long a[1000010]={0};//大数组要开在上面,防止爆
int main()//注意审题是求字串中的最小值
{
long long n;
cin>>n;
int i,j;
for(i=1;i<=n;i++)
{
cin>>a[i];
}
int k;
cin>>k;
for(i=1;i<=n;i++)//这里注意数组是从1开始
{
long long min=1000010;//赋上一个达不到的极大值啦
int l=(i-k>0)?(i-k):1;
int r=(i+k>n)?n:(i+k);//注意判断语句()后面要先跟?语句再跟:
for(j=l;j<=r;j++)
{
if(a[j]<min)
{
min=a[j];
}
}
cout<<min<<" ";
}
return 0;
}
要是蓝桥杯真这么简单就好了……