定义:目标检测就是找出图像中所感兴趣的物体,包括物体定位和物体分类两个子任务,即不仅需要对物体进行分类,还要检测出物体的位置。
应用:目标检测是计算机视觉和数字图像处理的一个热门方向,广泛应用于机器人导航、智能视频监控、工业检测、航空航天等诸多领域,同时目标检测也是泛身份识别领域的一个基础性的算法,对后续的人脸识别、步态识别、人群计数、实例分割等任务起着至关重要的作用。(多目标和单目标)
过程三步走:
1、选取感兴趣区域,这一步用来选取可能包含物体的区域;
2、对可能包含物体的区域进行特征提取;
3、对提取的特征进行检测分类。
传统方法:
滑动窗口+传统机器学习
因为特征大小不相等,要设置多个不同大小的滑动窗口,计算量大,运行慢
缺点:(优化方向)
1、识别效果不够好,准确率不高
2、计算量比较大,运算速度慢
3、可能会产生多个正确识别的结果
滑动窗口+CNN(强大的特征提取能力和分类能力)
优化结果:速度未提升反而有点下降,准确率提升