两数之和:
给定一个整数数组 nums
和一个整数目标值 target
,请你在该数组中找出 和为目标值 target
的那 两个 整数,并返回它们的数组下标。
这道题可以暴力破解也可以用哈希表,但是现在要说的是双指针大法。
关于双指针,我认为核心在于怎样移动指针。例如满足什么条件是左指针右移,或者什么条件下右指针左移。
这是就需要经历一个核心步骤 排序 将原数组升序或降序排序,在计算两数相加是否等于target时,可以取最左边的值及左小值与最右边的值及最大值相加,假如设这个和为sum,
那么 if(sum>target) 是不是就是在告诉我们,在左指针右边任意一个数与最右边的数相加都会大于target,那么就需要右指针左移,才能找到的和比现在的和小,反之亦然。
ok,现在我们就找到了指针移动的条件,这道题就迎刃而解了。
那么三数之和用这个方法岂不是要三个指针吗?nonono。
三数之和:
给你一个整数数组 nums
,判断是否存在三元组 [nums[i], nums[j], nums[k]]
满足 i != j
、i != k
且 j != k
,同时还满足 nums[i] + nums[j] + nums[k] == 0
。请你返回所有和为 0
且不重复的三元组。
如果将nums[i] + nums[j] + nums[k] == 0变为nums[j] + nums[k] == -nums[i]
这不就变成了两数相加等于target了吗。所以可以排序+双指针法。与两数之和不同的是,三数之和的“target”是变化的,所以还需要枚举target。
vector<vector<int>> threeSum(vector<int>& nums) {
int n = nums.size();
vector<vector<int>> ans;
ranges::sort(nums);
for (int i = 0; i < n - 2; i++) {
if (i > 0 && nums[i] == nums[i - 1])
continue;
int target = -nums[i];
if (nums[i + 1] + nums[i + 2] > target)
break;
if (nums[n - 1] + nums[n - 2] < target)
continue;
int j = i + 1;
int k = n - 1;
while (j < k) {
if (nums[j] + nums[k] == target) {
ans.push_back({nums[i], nums[j], nums[k]});
for (j++; j < k && nums[j] == nums[j - 1]; j++)
;
for (k--; k > j && nums[k] == nums[k + 1]; k--)
;
} else if (nums[j] + nums[k] > target) {
k--;
} else if (nums[j] + nums[k] < target) {
j++;
}
}
}
return ans;
}
那么以此类推,n数之和问题不过是枚举n多个target,不过时间复杂度也是指数级增长。