垦田计划
内存限制:512MB
时间限制:1s
题目描述
顿顿总共选中了 n块区域准备开垦田地,由于各块区域大小不一,开垦所需时间也不尽相同。据估算,其中第 i块(1≤i≤n)区域的开垦耗时为 ti天。这 n块区域可以同时开垦,所以总耗时 tTotal 取决于耗时最长的区域,即:tTotal=max{t1,t2,⋯ ,tn}
为了加快开垦进度,顿顿准备在部分区域投入额外资源来缩短开垦时间。具体来说:
-
在第 i块区域每投入 ci单位资源,便可将其开垦耗时缩短 1 天;
-
耗时缩短天数以整数记,即第 i 块区域投入资源数量必须是 ci 的整数倍;
-
在第 i块区域最多可投入 ci×(ti−k)单位资源,将其开垦耗时缩短为 k 天;
-
这里的 k 表示开垦一块区域的最少天数,满足 0<k≤min{t1,t2,⋯ ,tn};换言之,如果无限制地投入资源,所有区域都可以用 k天完成开垦。
现在顿顿手中共有 m 单位资源可供使用,试计算开垦 n 块区域最少需要多少天?
输入
从标准输入读入数据。
输入共 n+1 行。
输入的第一行包含空格分隔的三个正整数 n、m 和 k,分别表示待开垦的区域总数、顿顿手上的资源数量和每块区域的最少开垦天数。
接下来 n行,每行包含空格分隔的两个正整数 ti 和 ci,分别表示第 i 块区域开垦耗时和将耗时缩短 1 天所需资源数量。
输出
输出到标准输出。
输出一个整数,表示开垦 n 块区域的最少耗时。
样例输入1
4 9 2
6 1
5 1
6 2
7 1
样例输出1
5
样例输入2
4 30 2
6 1
5 1
6 2
7 1
样例输出2
2
提示
样例1解释
如下表所示,投入 5单位资源即可将总耗时缩短至 5 天。此时顿顿手中还剩余 4 单位资源,但无论如何安排,也无法使总耗时进一步缩短。
i | 基础耗时titi | 缩减1天所需资源cici | 投入实际资源数量 | 实际耗时 |
---|---|---|---|---|
1 | 6 | 1 | 1 | 5 |
2 | 5 | 1 | 0 | 5 |
3 | 6 | 2 | 2 | 5 |
4 | 7 | 1 | 2 | 5 |
样例2解释
投入 20 单位资源,恰好可将所有区域开垦耗时均缩短为 k=2 天;受限于 k,剩余的 10 单位资源无法使耗时进一步缩短。
子任务
70% 的测试数据满足:0<n,ti,ci≤100 且 0<m≤;
全部的测试数据满足:0<n,ti,ci≤且 0<m≤
。
评分标准
本题目满分100分,共20个测试,每个5分。
题解
使用二分查找来解决,最小的最大工时一定在[k,max(ti)]之间,直接二分查找,看是否符合要求
#include<iostream>
#include<bits/stdc++.h>
using namespace std;
const int N=1e5+10;
struct area{
int t;
int c;
};
vector<area> pq(N);
bool tmp(area a,area b){
return a.t>b.t;
}
bool check(int mid,int n,int m){
long long sum=0;
for(int i=0;i<n;i++){
if(pq[i].t>mid){
sum+=(pq[i].t-mid)*pq[i].c;
}else{
sum+=0;
}
}
if(sum<=m){ //mid作为最大工时,资源足够分配
return 1;
}else{
return 0;
}
}
int main(){
ios::sync_with_stdio(0),cin.tie(0),cout.tie(0);
int n,m,k;
cin>>n>>m>>k; //最少的最大工时一定在[k,max(ti)]之间,直接折半查找即可,也就是二分
for(int i=0;i<n;i++){
cin>>pq[i].t>>pq[i].c;
}
sort(pq.begin(),pq.end(),tmp);
int Max_t=pq[0].t;
int l=k;
int h=Max_t;
int mid;
while(l<=h){
mid=(l+h)/2;
if(check(mid,n,m)){
h=mid-1;
}else{
l=mid+1;
}
}
cout<<l<<endl;
return 0;
}