- 博客(24)
- 收藏
- 关注
原创 深度学习实验代码-实验十六- 循环神经网络(3)
实验数据集为IMDB数据集,需要自行下载。同时,对于这套参数而言注意力机制的性能不如不同的双向LSTM,考虑可以适当更改一些参数,来找到注意力机制的最优性能。
2024-12-17 16:24:23
306
原创 深度学习作业 - 作业十一 - LSTM
1.LSTM的推导主要是参照SumWaiLiu的博客园自己梳理复现了一遍,这里强烈推荐这个博客,写得又清楚又好,推导的过程再一次加深了对反向传播算法的认识,其实本质就是找到梯度的反向递归式,通过对求导链式法则的推导,一步一步由后面的损失函数计算前面的损失函数。得到递推公式后,想要计算任何一个参数的梯度直接使用已经计算好的损失函数代入求导式子即可,这也是本学期最后一次推导反向传播的作业了(大概),从开始到现在,接触并学会了推导式子,而不是像之前一样只会拿到一个特例来算了,这是一个很大的进步。
2024-12-16 17:52:52
949
原创 深度学习作业 - 作业十 - BPTT
1.本次作业重新推导了BPTT,虽然课上听懂了老师举的例子,但是关于一般推导的相关内容还是没有特别理解。自己下来推导的时候也研究思考了挺久的,最后也是弄懂了书上的推导过程;后面跟着继续推导了课本上没有给出证明过程的两个公式,也是比较全面认识了BPTT算法了。2.写第三道作业题的时候发现老师还没讲完LSTM,自己研究了一下发现别人博客上也没有个比较形象的讲解,上课的时候听老师讲了一遍,还是挺清楚的,下来就直接完成了作业。
2024-12-04 21:16:25
1767
原创 深度学习实验代码-实验十三- 卷积神经网络(4)
注:自己跑预训练模型的时候发现运行时间比非预训练模型还要长,以后若有需要跑这段代码的同学们可以看看是不是也是这个情况 :)
2024-12-01 12:06:12
388
原创 深度学习作业 - 作业九 - RNN-SRN-Seq2Seq
本次课程学习了RNN的相关知识,作业中也都用到了相关的RNN知识,这里我们进行简单的介绍。RNN意为循环神经网络(Recurrent)是一种具有循环连接的神经网络结构。我们前面所学到的FNN有一个致命的问题就是,在FNN中,每一个输入加权结合得到一个输出,即我们只关注到了层与层之间的连接与传播忽视了本层之间所有神经元的联系,这就导致了FNN完全无法处理时序数据,即输入的数据之间会因为出现的先后顺序而有影响的数据。就拿我们日常说话来举例,给出一句话:老师走进教室,对张三说:你好,同学。
2024-11-27 16:28:53
1056
原创 深度学习实验代码-实验十一-卷积神经网络(2)
--------------------------------------------------打印并观察数据分布------------------------------------------------------train_set, dev_set, test_set = json.load(gzip.open('./mnist.json.gz')) # 读取数据集# 获取对应图像与标签# 划分数据集。
2024-11-18 18:13:58
326
原创 深度学习作业 - 作业八 - 卷积 导数 反向传播
1.本次作业主要是进行了卷积神经网络的相关公式推导以及一些设计公式的题目,通过解读分析这些题目,卷积神经网络这一部分的细节我有了更深入的认识。3.计算复杂度这个题目也是第一次接触到,见到之后就去查资料了,查阅过其他大神的博客之后才总结出来相关复杂度的计算方法;同时之前关于卷积之后的特征图大小的计算也只是在学习过程中有一定的了解,这一次作业真真正正用到了这些公式,对这些公式进行了总结。
2024-11-11 20:43:35
1794
原创 深度学习实验代码-实验十-卷积神经网络(1)
动态创建卷积核并初始化权重weight_value = torch.ones(kernel_size, kernel_size) # 默认初始化为1.0# 步长和填充# 零填充else:new_X = X# 获取输出张量的维度大小# 进行带步长的卷积操作dim=[1, 2]# 输入张量,加上批次维度[13., 14., 15., 16.]]).unsqueeze(0) # 添加批次维度# 创建 Conv2D 实例并应用# 计算输出大小# 进行池化操作# 最大池化。
2024-11-10 17:41:53
404
原创 深度学习作业 - 作业七 - 基于CNN的XO识别
1.这一次作业主要是认识了在卷积神经网络过程中的一些新的专业词汇,经过这次作业的学习,我对卷积提取特征这一过程算是彻底明明白白了。首先,一般在卷积的过程中,会采用局部感知+权值共享的方式来在降低网络复杂度的同时保持网络性能或增加性能,局部感知让每个卷积核专注于特定的特征提取任务,权值共享让这些特征提取任务在整个图像上保持一致。池化同样是一种降低网络复杂度同时又保持网络性能的手段,通过使用某些值来代表一个区域中的所有像素点,来降低特征尺寸,同时还能很好的继承共有的特征。
2024-10-30 11:30:08
771
原创 深度学习作业 - 作业六 - 卷积
卷积核作用原理Blur图像模糊、平滑处理通过计算像素周围的平均值,减少图像中的高频噪声和细节。检测图像中从下往上的边缘Sobel算子,用于检测垂直边缘,强调下方区域变化。Emboss浮雕效果通过改变灰度来模拟光照效果,使图像呈现立体感。Identity保持图像不变该滤波器不会改变图像,输出与输入相同。Outline检测图像边缘使用边缘检测算子,高亮边缘,突出轮廓。Sharpen图像锐化,增强细节通过增强像素值的差异,突出图像细节,边缘更加清晰。
2024-10-19 18:11:30
2155
原创 深度学习实验代码-实验五-前馈神经网络(1)
本次实验的代码比较简单,更多的是对神经元与激活函数的相关分析。代码部分就是做个计算,画个函数图像的事情~
2024-10-13 11:41:01
246
原创 深度学习实验代码-实验四
本次实验采取了Runner类来规范化模型的训练,实验时针对不同的回归任务又更改了两个不同的Runner类(区别主要就是数据集的维度处理方面,其余地方没有区别),这里展示基于 Logistic回归的二分类任务中的Runner类。而对于多分类任务来说,需要对所有的概率使用argmax函数求得一个最大值,才能得到相应的类别标签。对于单分类任务来说,将预测结果大于0.5的即可标记为1,小于0.5的标记为0。准确率的计算二分类与多分类不太一样。数据集的构建参考了百度飞桨的课本。
2024-10-08 15:15:23
493
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅