汉诺塔问题

要求:

将A柱上的圆盘移动到B柱上,每次只能移动柱子最顶端的一个圆盘,并且小圆盘必须要在大圆盘上面。

分析:

上图提供了一个四个圆盘的情况,那么完成圆盘由A柱移动到B柱需要几步?为了大家更好得理解这个问题,我们从A柱上只有一个圆盘开始分析:

A柱起始圆盘个数

操作次数

等价表达式

移动顺序

1

1

2^1 - 1

A1->B1

2

3

2^2 - 1

A1->C1; A2->B2; C1->B1

3

7

2^3 - 1

A1->B1; A2->C2; B1->C1; A3->B3; C1->A1; C2->B2; A1->B1

4

15

2^4 - 1

……

规律:

有n个圆盘则最少需要操作2^n - 1次;

可以将n个圆盘的处理理解为将先将上面的n-1个圆盘按顺序移动到辅助柱C上,再将第n个圆盘移动到目标柱B上,然后将C上的n-1个圆盘移动到B上,也就是说将问题由n化简为n-1,n-1也同样可以化简为n-2……

从上面的规律总结中我们可以设计出一种递归算法:

#include <stdio.h>
void hanoi(int num, char sou, char tar, char aux) 
{
    static int i = 1;//统计移动次数
     
    if (num == 1) //如果圆盘数量仅有 1 个,则直接从起始柱移动到目标柱
    {
        printf("第%d次:从 %c 移动至 %c\n", i, sou, tar);
        i++;
    }
    else 
    {
        //递归调用 hanoi() 函数,将 num-1 个圆盘从起始柱移动到辅助柱上
        hanoi(num - 1, sou, aux, tar);
        //将起始柱上剩余的最后一个大圆盘移动到目标柱上
        printf("第%d次:从 %c 移动至 %c\n", i, sou, tar);
        i++;
        //递归调用 hanoi() 函数,将辅助柱上的 num-1 圆盘移动到目标柱上
        hanoi(num - 1, aux, tar, sou);
    }
}

int main()
{
    int n = 0;
    scanf("%d", &n);//输入起始柱圆盘个数
    hanoi(n, 'A', 'B', 'C');//A、B、C分别表示起始柱、目标柱、辅助柱
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值