使用vector容器实现杨辉三角

杨辉三角,是二项式系数在三角形中的一种几何排列。它是中国古代数学的杰出研究成果之一,它把二项式系数图形化,把组合数内在的一些代数性质直观地从图形中体现出来,是一种离散型的数与形的结合。

首先我们创建一个vector<vector<int>>类型的变量,然后为其分配空间。由于杨辉三角的性质三角形两侧的数为1,那为了方便实现目的我们可以在创建三角形之后为其两侧赋值为1,其余地方为0.

由于在杨辉三角中每个数字等于上一行的左右两个数字之和,可用此性质写出整个杨辉三角。即第 n 行的第 i 个数等于第 n−1 行的第 i−1 个数和第 i 个数之和。我们便可以推出数学表达式。

vect[i][j]=vect[i-1][j-1]+vect[i-1][j];

class Solution {
public:
    vector<vector<int>> generate(int numRows) {
        vector<vector<int>> vect(numRows);
        for(int i=0;i<numRows;i++)
        {
            vect[i].resize(i+1);
            vect[i][0]=vect[i][i]=1;
        }
           
        for(int i=2;i<numRows;i++)
        {

            for(int j=1;j<i;j++)
            {
                vect[i][j]=vect[i-1][j-1]+vect[i-1][j];
            }
        }
        return vect;
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值