代码随想录 回溯算法-排序

文章介绍了两种情况下的全排列问题:一种是不考虑重复数字的全排列,另一种是允许重复数字但要求不重复排列。同时,针对机票行程重新规划的问题,通过回溯算法寻找最小字典排序的行程组合。
摘要由CSDN通过智能技术生成

目录

46.全排序 

47.全排列|| 

332.重新安排行程


46.全排序 

46. 全排列

中等

给定一个不含重复数字的数组 nums ,返回其 所有可能的全排列 。你可以 按任意顺序 返回答案。

示例 1:

输入:nums = [1,2,3]
输出:[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]

示例 2:

输入:nums = [0,1]
输出:[[0,1],[1,0]]

示例 3:

输入:nums = [1]
输出:[[1]]

提示:

  • 1 <= nums.length <= 6
  • -10 <= nums[i] <= 10
  • nums 中的所有整数 互不相同

 

 通过全局变量used数组进行树枝去重

class Solution {  
    // 存储所有可能的排列结果的列表  
    List<List<Integer>> result = new ArrayList<>();  
    // 存储当前正在构建的排列的列表  
    List<Integer> path = new ArrayList<>();  
    // 标记数组,用于记录数字是否已经被使用  
    int[] used;  
  
    // 外部接口方法,用于获取数字数组的所有排列  
    public List<List<Integer>> permute(int[] nums) {  
        // 初始化used数组,大小为21,因为题目中暗示了nums中的元素范围为[0, 10],所以偏移10后使用  
        used = new int[nums.length];  
        // 开始回溯过程  
        backtracking(nums);  
        // 返回所有可能的排列结果  
        return result;  
    }  
  
    // 回溯方法,用于生成排列  
    public void backtracking(int[] nums){  
        // 如果当前路径的长度等于nums的长度,说明一个排列已经生成完毕  
        if(path.size() == nums.length){  
            // 将当前路径添加到结果列表中  
            result.add(new ArrayList(path));  
            // 结束当前递归分支  
            return;  
        }  
        // 遍历nums数组中的每个元素  
        for(int i = 0; i < nums.length; i++){  
            // 如果当前元素已经被使用,则跳过  
            if(used[i] == 1){  
                continue;  
            }  
            // 将当前元素添加到路径中  
            path.add(nums[i]);  
            // 标记当前元素为已使用  
            used[i] = 1;  
            // 继续递归生成下一个位置的元素  
            backtracking(nums);  
            // 回溯,撤销选择,标记当前元素为未使用  
            used[i] = 0;  
            // 回溯,撤销选择,从路径中移除当前元素  
            path.removeLast();  
        }  
    }  
}

47.全排列|| 

47. 全排列 II

中等

给定一个可包含重复数字的序列 nums ,按任意顺序 返回所有不重复的全排列。

示例 1:

输入:nums = [1,1,2]
输出:
[[1,1,2],
 [1,2,1],
 [2,1,1]]

示例 2:

输入:nums = [1,2,3]
输出:[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]

提示:

  • 1 <= nums.length <= 8
  • -10 <= nums[i] <= 10

 

这里要用到树枝去重和树层去重,树枝去重使用used数组,和之前的方式一样,树层去重去 

class Solution {  
    // 存储所有可能的排列结果的列表  
    List<List<Integer>> result = new ArrayList<>();  
    // 存储当前正在构建的排列的列表  
    List<Integer> path = new ArrayList<>();  
    // 标记数组,用于记录数字是否已经被使用  
    int[] used;  
  
    // 外部接口方法,用于获取数字数组的所有不重复排列  
    public List<List<Integer>> permuteUnique(int[] nums) {  
        // 初始化used数组,大小为nums的长度  
        used = new int[nums.length];  
        // 对nums数组进行排序,以便在回溯过程中跳过重复元素  
        Arrays.sort(nums);  
        // 开始回溯过程  
        backtracking(nums);  
        // 返回所有可能的排列结果  
        return result;  
    }  
  
    // 回溯方法,用于生成不重复排列  
    public void backtracking(int[] nums){  
        // 如果当前路径的长度等于nums的长度,说明一个排列已经生成完毕  
        if(path.size() == nums.length){  
            // 将当前路径添加到结果列表中  
            result.add(new ArrayList<>(path));  
            // 结束当前递归分支  
            return;  
        }  
        // 遍历nums数组中的每个元素  
        for(int i = 0; i < nums.length; i++){  
            // 如果当前元素和前一个元素相同,并且前一个元素未被使用,则跳过当前元素  
            // 这样可以避免生成包含重复元素的排列  
            if(i > 0 && nums[i] == nums[i - 1] && used[i - 1] == 0){  
                continue;  
            }  
            // 如果当前元素已经被使用,则跳过  
            if(used[i] == 1){  
                continue;  
            }  
            // 将当前元素添加到路径中  
            path.add(nums[i]);  
            // 标记当前元素为已使用  
            used[i] = 1;  
            // 继续递归生成下一个位置的元素  
            backtracking(nums);  
            // 回溯,撤销选择,标记当前元素为未使用  
            used[i] = 0;  
            // 回溯,撤销选择,从路径中移除当前元素  
            path.removeLast();  
        }  
    }  
}

332.重新安排行程

332. 重新安排行程

困难

给你一份航线列表 tickets ,其中 tickets[i] = [fromi, toi] 表示飞机出发和降落的机场地点。请你对该行程进行重新规划排序。

所有这些机票都属于一个从 JFK(肯尼迪国际机场)出发的先生,所以该行程必须从 JFK 开始。如果存在多种有效的行程,请你按字典排序返回最小的行程组合。

  • 例如,行程 ["JFK", "LGA"] 与 ["JFK", "LGB"] 相比就更小,排序更靠前。

假定所有机票至少存在一种合理的行程。且所有的机票 必须都用一次 且 只能用一次。

示例 1:

输入:tickets = [["MUC","LHR"],["JFK","MUC"],["SFO","SJC"],["LHR","SFO"]]
输出:["JFK","MUC","LHR","SFO","SJC"]

示例 2:

输入:tickets = [["JFK","SFO"],["JFK","ATL"],["SFO","ATL"],["ATL","JFK"],["ATL","SFO"]]
输出:["JFK","ATL","JFK","SFO","ATL","SFO"]
解释:另一种有效的行程是 ["JFK","SFO","ATL","JFK","ATL","SFO"] ,但是它字典排序更大更靠后。

提示:

  • 1 <= tickets.length <= 300
  • tickets[i].length == 2
  • fromi.length == 3
  • toi.length == 3
  • fromi 和 toi 由大写英文字母组成
  • fromi != toi

这里先对传入的集合排序是为了先访问到字典排序更小的元素,backtracking返回boolean是为了只找一个有效行程,先找到的那个有效行程一定是字典排序更小的 ,用used数组来进行树枝去重

class Solution {  
    // 结果列表,存储最终的旅行行程  
    private ArrayList<String> res;  
    // 当前构建的行程路径  
    private ArrayList<String> path = new ArrayList<>();

    //去重
    int[] used;  
  
    // 主方法,用于找到旅行行程  
    public List<String> findItinerary(List<List<String>> tickets) {  
        // 将tickets按照目的地(即第二个元素)进行排序  
        // 这样能够确保回溯时优先选择目的地字母顺序靠前的航班  
        Collections.sort(tickets, (a, b) -> a.get(1).compareTo(b.get(1)));  
        // 起点是"JFK"  
        path.add("JFK");  
        // 标记数组,用于记录机票是否已被使用  
        used = new int[tickets.size()];  
        // 开始回溯  
        backTracking(tickets);  
        // 返回最终构建的旅行行程  
        return res;  
    }  
  
    // 回溯方法,用于生成旅行行程  
    public boolean backTracking(List<List<String>> tickets) {  
        // 如果路径中的机场数量等于机票数量加1(因为起点"JFK"也算一个点)  
        // 则说明已经构建了一个完整的旅行行程  
        if (path.size() == tickets.size() + 1) {  
            // 将当前路径赋值给结果列表  
            res = new ArrayList<>(path);  
            // 找到了一个完整的行程,返回true  
            return true;  
        }  
  
        // 遍历所有机票  
        for (int i = 0; i < tickets.size(); i++) {  
            // 如果机票未被使用,且当前机票的起点与当前路径的最后一个机场相同  
            if (used[i] == 0 && tickets.get(i).get(0).equals(path.getLast())) {  
                // 将当前机票的终点添加到路径中  
                path.add(tickets.get(i).get(1));  
                // 标记当前机票为已使用  
                used[i] = 1;  
  
                // 继续回溯,寻找下一个机票  
                if (backTracking(tickets)) {  
                    // 如果找到了一个完整的行程,则直接返回true  
                    return true;  
                }  
  
                // 回溯,撤销选择  
                // 标记当前机票为未使用  
                used[i] = 0;  
                // 从路径中移除当前机票的终点  
                path.removeLast();  
            }  
        }  
  
        // 如果无法构建完整的行程,则返回false  
        return false;  
    }  
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值